pydata-london-2025

IntelliNodeは、グラフベースのアーキテクチャを使用してAIワークフローを調整するオープンソースライブラリです。このリポジトリは、医療とウェルネスのシナリオにおけるマルチエージェントシステムの適用を示す教育的な例を含んでいます。特に、栄養評価のラボでは、OpenAI GPT-4がクライアントのノートを分析し、Anthropic Claudeが食事プランを作成します。

GitHubスター

8

ユーザー評価

未評価

お気に入り

0

閲覧数

1

フォーク

1

イシュー

2

README
IntelliNode Medical Use Cases

IntelliNode is an open-source library for orchestrating AI workflows using graph-based architectures. This repository contains educational examples demonstrating how multi-agent systems can be applied to healthcare and wellness scenarios.

Install Intellinode
# Basic installation
pip install intelli

# With MCP support
pip install "intelli[mcp]"
Environment Setup

Create a .env file in the project root with these keys:

OPENAI_API_KEY=your_openai_api_key_here
ANTHROPIC_API_KEY=your_anthropic_api_key_here

Install project dependencies:

pip install -r requirements.txt

Launch Jupyter:

jupyter lab
MCP Server

To run the MCP server that serves CSV files using Polars:

pip install -r requirements.txt
cd mcp_server
# polars data provider
python eicu_mcp_server_polars.py

(Alternative) Start the server using the Pandas as data provider:

python eicu_mcp_server.py
Lab Overview
Lab 1: Nutrition Assessment with IntelliNode
  • OpenAI GPT-4 analyzes client notes, Anthropic Claude creates meal plans.
  • Demonstrates connecting multiple AI providers in healthcare workflows.
Nutrition Assessment Flow
Lab 2: Multiple Models with IntelliNode
  • Showcases text, image, and speech generation in one system.
Multiple Models Flow
Lab 3: MCP Medical Prediction with Graph
  • Medical prediction system using Model Context Protocol (MCP).
  • MCP server serves CSV files using Polars backend.
  • Agents predict outcomes from clinical data.
MCP Medical Prediction Flow
Slides

PyData - Graph Theory for Multi-Agent Integration
https://www.slideshare.net/slideshow/pydata-graph-theory-for-multi-agent-integration/280302074

⚠️ Important Disclaimer

These examples are provided for educational purposes only, and are not intended for actual patient care as presented.

For production deployments, you must implement logging, secure clinical approvals, and establish appropriate governance around the workflow.

Lab Contribution

The use case and examples in this repository were provided by MedWrite.ai.