Insight_Platform
Insight Platform is a modular agent-driven system for automated AI insight generation, combining LangGraph agents, structured protocols (MCP, A2A, ACP), and local LLMs via Ollama, with Streamlit UI and file-based storage.
GitHub Stars
0
User Rating
Not Rated
Forks
0
Issues
0
Views
1
Favorites
0
README
Insight Platform — AI Signal Connector Prototype
Agent System, Protocol Design, and Modular LLM Architecture
Modular Agentic System for Curated AI Insights Using LangGraph + Ollama
What This Is
A modular Python project combining:
- LangGraph Agent Flow:
Scraper → Summarizer → Tagger → Connector → Publisher - Ollama for Local Summarization:
Using/api/generate
endpoint with streamed response handling - Streamlit UI for End-User Display:
Browse markdown-formatted insights with tags and source URLs - Markdown + JSON File Storage:
Insights saved as.md
+.meta.json
pairs
Project Structure
backend/
├── app.py (FastAPI routes)
├── core/orchestrator.py (LangGraph flow)
├── agents/ (scraper_agent, summarizer_agent, etc.)
├── protocols/ (mcp, a2a, acp structures)
├── utils/
streamlit_ui/
├── app.py (Streamlit frontend)
docker-compose.yml
README.md
How to Set Up Locally
Clone the Repo
git clone https://github.com/yourusername/insight-platform.git
cd insight-platform
Pull Required Ollama Model
Start only Ollama service first:
docker compose up ollama
Then pull the model:
curl -X POST http://localhost:11434/api/pull \
-H "Content-Type: application/json" \
-d '{"name": "llama3"}'
Build and Run Backend + UI
docker compose up --build
- Backend available at:
http://localhost:8000
- Streamlit UI at:
http://localhost:8501
Workflow Summary
- Send a URL to
/run_pipeline
:- The pipeline scrapes → summarizes → tags → connects → publishes.
- Visit Streamlit UI or call
/list_insights
API to view insights. - Insights include:
- Title, tags, content preview, original source URL.
Current Scope + Limitations
- No CI/CD or Kubernetes deployment yet.
- Models must be pulled manually the first time.
- Local file storage only; no database integration yet.
Future Enhancements
- CI/CD pipelines (GitHub Actions, Docker Registry)
- Full Kubernetes Helm Charts
- OAuth2 login on Streamlit UI
- Ollama model pre-pull automation
Contribution Guidelines
- Fork → Clone → Submit PR
- Focus on modular, readable, community-friendly code.
Author Information
Data Scientist. Graduate Student of ASU(2023), Former Undergraduate Student of Dr.MGR University(CS,2017).
Austin
12
Followers
93
Repositories
1
Gists
6
Total Contributions
Top Contributors
Threads