logsec-mcp-session-knowledge-base
LogSec - AI Session Knowledge Management System for MCP (Model Context Protocol). Professional session continuity and knowledge management for AI workflows.
GitHub Stars
0
User Rating
Not Rated
Forks
0
Issues
0
Views
1
Favorites
0
README
LogSec MCP - Session Knowledge Management
Knowledge management system for AI session continuity, built as a Model Context Protocol (MCP) server.
Overview
LogSec provides persistent memory for AI assistants through a clean 3-tier architecture. The system enables context preservation across conversations with minimal overhead.
Core Features
- Session Persistence: SQLite-based storage for conversation history
- Project Organization: Isolated knowledge bases per project
- Search Capability: Keyword-based content retrieval
- Continuation System: Structured session handoffs
- Template Engine: Customizable response patterns
Installation
# Clone repository
git clone https://github.com/LevionLaurion/logsec-mcp-session-knowledge-base.git
cd LogSec
# Configure Claude Desktop
# Add to %APPDATA%\Claude\claude_desktop_config.json:
{
"mcpServers": {
"logsec": {
"command": "python",
"args": ["C:\\LogSec\\src\\logsec_core_v3.py"],
"cwd": "C:\\LogSec"
}
}
}
# Restart Claude Desktop
Usage
Basic Commands
lo_start <project> # Initialize session with continuation
lo_save <project> # Save current context
lo_load <project> # Load project knowledge
lo_update <project> # Generate project documentation
lo_cont <project> # Create continuation file
Examples
lo_start myproject
lo_save myproject "Implementation details for the API endpoint"
lo_load myproject "API"
Architecture
Directory Structure
LogSec/
├── src/
│ ├── logsec_core_v3.py # Main MCP server (563 lines)
│ └── config/
│ └── config.json # Configuration
├── data/
│ ├── projects/ # Project data
│ │ └── {project}/
│ │ ├── readme.md
│ │ └── continuation.md
│ ├── database/
│ │ └── logsec_phase3.db # Session storage
│ └── templates/ # Response templates
└── docs/
└── DIRECTORY_STRUCTURE.md
Implementation
The system implements the Model Context Protocol with:
- JSON-RPC message handling
- Tool registration and dispatch
- Error handling and logging
- Template-based responses
Configuration
Configuration via src/config/config.json
:
{
"db_path": "C:\\LogSec\\data\\database\\logsec_phase3.db",
"projects_dir": "C:\\LogSec\\data\\projects",
"templates_dir": "C:\\LogSec\\data\\templates"
}
Development
Requirements
- Python 3.9+
- No external dependencies (uses stdlib only)
- Windows/Linux/macOS compatible
Testing
python -m unittest discover tests/
Contributing
- Fork the repository
- Create feature branch
- Commit changes
- Push to branch
- Create Pull Request
License
MIT License - see LICENSE file for details.
Author Information
0
Followers
2
Repositories
0
Gists
22
Total Contributions
Top Contributors
Threads