CaseCanopy
CaseCanopy is an AI-powered legal platform that enables cross-jurisdiction legal precedent discovery and outcome prediction. Users can access equal legal insights through AI-generated legal documents, case law searches, and outcome predictions. The modern web application allows for easy legal research and document management.
GitHub Stars
1
User Rating
Not Rated
Forks
0
Issues
0
Views
3
Favorites
0
README
CaseCanopy
Overview
CaseCanopy is an AI-powered legal platform that bridges the justice gap by enabling cross-jurisdiction legal precedent discovery and outcome prediction. It provides equal access to legal insights through a modern, responsive web application.
Project Structure
- agentic-ai/: Python FastAPI service for legal document generation using AI.
- backend/: Go (Gin) backend for user, admin, file, and document management.
- frontend/: Next.js/React frontend for user interaction and legal research.
- RAG/: Python Flask server for retrieval-augmented generation (LangChain-based).
Key Features
- AI-powered legal document generation (petitions, RTIs, complaints, etc.)
- Case law and legal precedent search
- Outcome prediction and legal insights
- User authentication and admin approval
- Document upload, management, and PDF generation
- Modern, responsive frontend UI
Setup Instructions
1. Clone the repository:
git clone https://github.com/Arpit529Srivastava/Case_Canopy.git
cd Case_Canopy
2. Set up the AI Agent:
cd ai_agent
# Follow instructions in ai_agent/README.md
3. Set up the Backend:
cd backend
go mod tidy
go run main.go
# Server runs on :8000, requires MongoDB running locally
4. Set up the Frontend:
cd frontend
npm install
npm run dev
# App runs on http://localhost:3000
5. Set up the RAG:
cd RAG
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python app.py
# Server runs on http://localhost:8000
# in other terminal tab run:
source venv/bin/activate
pip install -r requirements.txt
python analyzer.py
Environment Variables
1. agentic-ai/.env
OPENAI_API_KEY=your_openai_api_key_here
2. RAG/.env
OPENAI_API_KEY=your_openai_api_key_here
MODEL_NAME=gpt-4o-mini
QDRANT_URL=your_link
QDRANT_API_KEY=your_qdrant_api_key_here
3. backend/.env
SMTP_HOST=smtp.gmail.com
SMTP_PORT=587
SMTP_USER=your_email
SMTP_PASS=generate_password_and paste_here
JWT_SECRET=your_token
GEMINI_API_KEY=your_api_key
4. frontend/.env.local
MONGODB_URI=you_uri
JWT_SECRET=secret_token
License
- This project is licensed under the MIT License.
Author Information
Threads