GitHub Stars
1
User Rating
Not Rated
Forks
1
Issues
0
Views
2
Favorites
0
README
MCP LLM Bridge
A bridge connecting Model Context Protocol (MCP) servers to OpenAI-compatible LLMs like Ollama Read more about MCP by Anthropic here:
Quick Start
# Install
curl -LsSf https://astral.sh/uv/install.sh | sh
git clone https://github.com/bartolli/mcp-llm-bridge.git
cd mcp-llm-bridge
uv venv
source .venv/bin/activate
uv pip install -e .
Note: reactivate the environment if needed to use the keys in `.env`: `source .venv/bin/activate`
Then configure the bridge in [src/mcp_llm_bridge/main.py](src/mcp_llm_bridge/main.py)
```python
mcp_server_params=StdioServerParameters(
command="uv",
# CHANGE THIS = it needs to be an absolute directory! add the mcp fetch server at the directory (clone from https://github.com/modelcontextprotocol/servers/)
args=["--directory", "~/llms/mcp/mc-server-fetch/servers/src/fetch", "run", "mcp-server-fetch"],
env=None
),
# llm_config=LLMConfig(
# api_key=os.getenv("OPENAI_API_KEY"),
# model=os.getenv("OPENAI_MODEL", "gpt-4o"),
# base_url=None
# ),
llm_config=LLMConfig(
api_key="ollama", # Can be any string for local testing
model="llama3.2",
base_url="http://localhost:11434/v1" # Point to your local model's endpoint
),
)
Additional Endpoint Support
The bridge also works with any endpoint implementing the OpenAI API specification:
Ollama
llm_config=LLMConfig(
api_key="not-needed",
model="mistral-nemo:12b-instruct-2407-q8_0",
base_url="http://localhost:11434/v1"
)
License
Contributing
PRs welcome.
Author Information
20
Followers
19
Repositories
0
Gists
2
Total Contributions
Top Contributors
Threads