mcp-server-ga4

Model Context Protocol (MCP) server for Google Analytics 4 (GA4) that enables LLMs to access and analyze GA4 data

GitHub Stars

11

User Rating

Not Rated

Forks

6

Issues

0

Views

1

Favorites

0

README
MCP Server for Google Analytics 4

A Model Context Protocol (MCP) server that allows Large Language Models (LLMs) to interact with Google Analytics 4 (GA4) data through the Google Analytics Data API.

Features
  • Run standard GA4 reports with customizable dimensions, metrics, and date ranges
  • Get real-time data for the past 30 minutes
  • Retrieve metadata about available metrics and dimensions
  • Secure authentication using Google Cloud's Application Default Credentials
  • Configurable for easy deployment via Smithery
Installation
Using pip
pip install mcp-server-ga4
From source
git clone https://github.com/yourusername/mcp-server-ga4.git
cd mcp-server-ga4
pip install -e .
Authentication

This server uses Google Cloud's Application Default Credentials (ADC) for authentication. Before using the server, you'll need to:

  1. Create a Google Cloud project
  2. Enable the Google Analytics Data API
  3. Set up authentication:
gcloud auth application-default login

For more details, see the Google Cloud Authentication documentation.

Usage
Command Line

Start the server with your GA4 property ID:

mcp-server-ga4 --property-id YOUR_GA4_PROPERTY_ID

The server will use the standard MCP stdio transport by default.

Environment Variables

You can also set configuration via environment variables:

  • GA4_PROPERTY_ID: Your Google Analytics 4 property ID
Using with Claude Desktop
  1. Install the server globally: pip install mcp-server-ga4
  2. Set up your Google Cloud authentication: gcloud auth application-default login
  3. Edit your Claude Desktop configuration:
{
    "mcpServers": {
        "ga4": {
            "command": "mcp-server-ga4",
            "args": ["--property-id", "YOUR_GA4_PROPERTY_ID"]
        }
    }
}
Available Tools
run-report

Runs a standard GA4 report with configurable metrics, dimensions, and date ranges.

Parameters:

  • property_id (optional): GA4 property ID (overrides the default)
  • metrics: List of metric names (e.g., ["activeUsers", "sessions"])
  • dimensions (optional): List of dimension names (e.g., ["date", "country"])
  • date_range: Date range in one of these formats:
    • {"start_date": "YYYY-MM-DD", "end_date": "YYYY-MM-DD"}
    • "last7days", "last30days", "today", "yesterday"
  • limit (optional): Number of rows to return (default: 10)
run-realtime-report

Gets real-time data for the past 30 minutes.

Parameters:

  • property_id (optional): GA4 property ID (overrides the default)
  • metrics: List of metric names (e.g., ["activeUsers", "screenPageViews"])
  • dimensions (optional): List of dimension names (e.g., ["country", "city"])
  • limit (optional): Number of rows to return (default: 10)
get-metadata

Retrieves available metrics and dimensions for a GA4 property.

Parameters:

  • property_id (optional): GA4 property ID (overrides the default)
  • type (optional): Type of metadata to retrieve ("metrics", "dimensions", or "all", default: "all")
Examples
Running a standard report
What were the top 5 countries by active users in the last 30 days?
Checking real-time data
How many users are currently active on the site?
Getting metadata information
What metrics are available for me to query in GA4?
Development
  1. Clone the repository
  2. Install development dependencies: pip install -e ".[dev]"
  3. Run tests: pytest
License

MIT

Author Information
Harsh

Part time PM, Full time menace

Delhi

1

Followers

17

Repositories

2

Gists

1

Total Contributions

Top Contributors

Threads