mcp-server-semantic-analysis

analyze coding history (.specstory files & git history & code) and derive summary docu for KM system

GitHub Stars

0

User Rating

Not Rated

Forks

0

Issues

0

Views

3

Favorites

0

README
Semantic Analysis MCP Server

A powerful multi-agent semantic analysis system built with the Graphite framework, providing comprehensive code and conversation analysis capabilities through multiple interfaces.

Overview

This MCP server implements a sophisticated 7-agent architecture for semantic analysis:

  • Coordinator Agent - Workflow orchestration and quality assurance
  • Semantic Analysis Agent - Core LLM analysis with multi-provider fallback
  • Knowledge Graph Agent - Entity and relationship management with UKB integration
  • Web Search Agent - Context-aware search and validation
  • Synchronization Agent - Data sync across MCP Memory, Graphology DB, and shared-memory files
  • Deduplication Agent - Similarity detection and entity merging
  • Documentation Agent - Automated documentation generation
Features
Multi-Interface Access
  • MCP Server - Direct integration with Claude Code
  • HTTP API - REST endpoints for VSCode CoPilot extension
  • CLI - Command-line interface (sal command)
API Key Flexibility

3-tier fallback system for maximum compatibility:

  1. ANTHROPIC_API_KEY (Claude) - Primary
  2. OPENAI_API_KEY (OpenAI) - Secondary
  3. OPENAI_BASE_URL + OPENAI_API_KEY (Custom OpenAI-compatible) - Tertiary
  4. UKB-CLI fallback mode (no AI) - Final fallback
Advanced Capabilities
  • Workflow Orchestration - Complex multi-step analysis workflows
  • Quality Assurance - Agent output validation and auto-correction
  • Event Sourcing - Durable workflow state and recovery
  • Cross-Directory Execution - Works from any directory
  • Incremental Analysis - Delta analysis since last run
  • Knowledge Synchronization - Multi-system data consistency
Installation

This system is automatically installed as part of the main coding tools:

# Install the entire coding system (includes this semantic analysis server)
./install.sh
Usage
Command Line Interface
# Interactive semantic analysis
sal

# Repository analysis
sal --repository /path/to/repo

# Conversation analysis  
sal --conversation /path/to/conversation.md

# Incremental analysis since last run
sal --incremental

# Pattern extraction
sal --pattern "architectural-patterns,design-patterns"

# Check workflow status
sal --status

# Get help
sal --help
MCP Tools (Claude Integration)
  • determine_insights - Analyze repository or conversation for insights
  • analyze_repository - Extract patterns and architectural analysis
  • update_knowledge_base - Sync insights to knowledge systems
  • lessons_learned - Extract lessons from code or conversations
HTTP API (CoPilot Integration)

RESTful endpoints available at http://localhost:8765 when running:

  • POST /analyze/repository - Repository analysis
  • POST /analyze/conversation - Conversation analysis
  • POST /workflows/start - Start custom workflow
  • GET /workflows/{id}/status - Get workflow status
Architecture
Agent Responsibilities
  1. Coordinator - Manages workflows, coordinates between agents, performs QA
  2. Semantic Analysis - Core LLM-powered analysis with provider fallback
  3. Knowledge Graph - Entity/relationship management, UKB integration
  4. Web Search - Context gathering and validation
  5. Synchronization - Data consistency across storage systems
  6. Deduplication - Similarity detection and entity merging
  7. Documentation - Auto-generated reports and documentation
Data Flow
User Request → Coordinator → Workflow Engine → Agents → QA Validation → Knowledge Sync → Results
Storage Systems
  • MCP Memory - Session-based memory for Claude integration
  • Graphology DB - Graph database for CoPilot integration
  • Shared Memory Files - Persistent JSON files for team sharing
Configuration

Configuration is handled through environment variables:

# API Keys (3-tier fallback)
ANTHROPIC_API_KEY=your-anthropic-key
OPENAI_API_KEY=your-openai-key  
OPENAI_BASE_URL=your-custom-endpoint  # For custom OpenAI-compatible APIs

# Paths
CODING_TOOLS_PATH=/path/to/coding/repo

# Optional: Custom configuration
SEMANTIC_ANALYSIS_CONFIG=/path/to/config.json
Development
Setting up Development Environment
# Clone the repository (if developing standalone)
git clone <repository-url>
cd mcp-server-semantic-analysis

# Create virtual environment
python -m venv venv
source venv/bin/activate  # or `venv\Scripts\activate` on Windows

# Install dependencies
pip install -e .[dev]

# Run tests
pytest

# Format code
black .
ruff check --fix .
Adding New Agents
  1. Create agent file in agents/ directory
  2. Implement using Graphite framework patterns
  3. Register with coordinator in config/agent_config.py
  4. Add tests in tests/agents/
Adding New Workflows
  1. Create workflow file in workflows/ directory
  2. Define as Graphite Assistant
  3. Register in coordinator's workflow engine
  4. Add tests and documentation
Integration

This semantic analysis server integrates with:

  • Claude Code - Via MCP server protocol
  • VSCode CoPilot - Via HTTP API and bridge
  • UKB Tools - Direct integration and fallback
  • Knowledge Management System - Bi-directional sync
  • Git Repositories - Direct analysis capabilities
Troubleshooting
Common Issues
  1. API Key Issues: Check the 3-tier fallback chain
  2. Port Conflicts: System uses intelligent port management
  3. Permission Issues: Ensure proper file permissions
  4. Memory Issues: Large repositories may need increased limits
Logging

Comprehensive logging available at multiple levels:

  • Agent-specific logs
  • Workflow execution logs
  • API request/response logs
  • Error and debugging logs
Contributing
  1. Fork the repository
  2. Create a feature branch
  3. Add tests for new functionality
  4. Ensure all tests pass
  5. Submit a pull request
License

MIT License - See LICENSE file for details.

Author Information
Frank Wörnle

alive

BMW AGMunich

1

Followers

24

Repositories

1

Gists

9

Total Contributions

Top Contributors

Threads