GitHub Stars
1
User Rating
Not Rated
Forks
0
Issues
0
Views
1
Favorites
0
AirTrack
A Model Context Protocol (MCP) server for Apache Airflow that enables standardized access to DAG metadata, run status, and task insights, allowing seamless integration with MCP clients for monitoring and automation.
About
This project implements a Model Context Protocol server that wraps Apache Airflow's REST API, allowing MCP clients to interact with Airflow in a standardized way. It uses the official Apache Airflow client library to ensure compatibility and maintainability.
Project Structure
combined_project/
├── airflow/ # Airflow project files
│ ├── dags/ # Airflow DAG definitions
│ ├── logs/ # Airflow logs
│ ├── plugins/ # Airflow plugins
│ └── Docker-compose.yaml # Docker compose file for Airflow
│
└── mpc/ # MPC application files
├── utils/ # Utility functions
├── server.py # Main server file
└── main.py # Entry point
Running the Projects
Requirements
- Docker and Docker Compose for Airflow
- Python 3.8+ for MPC application
- Virtual environment for MPC application
Airflow
Navigate to the airflow directory:
cd airflow
Start Airflow using Docker Compose:
docker-compose up
Access the Airflow web interface at http://localhost:8181
Username:
admin
Password:airflow
MPC Application
Navigate to the mpc directory:
cd mpc
Create and activate a virtual environment:
python -m venv .venv .venv\Scripts\activate # On Windows source .venv/bin/activate # On Unix/MacOS
Install dependencies:
pip install -r requirements.txt
Run the MPC server:
python server.py
Usage with Claude Desktop
{
"mcpServers": {
"FlowPredictor": {
"command": "D:\\Apps\\conda\\Scripts\\uv.EXE",
"args": [
"run",
"--with",
"mcp[cli]",
"mcp",
"run",
"<---PATH OF YOUR SERVER FILE eg(C:\\Users\\..\\..\\..\\server.py) --->"
]
}
}
}
Integration
The Airflow DAGs can interact with the MPC application through API calls. Make sure both services are running when executing workflows that require MPC functionality.
Future Development
🔄 Live Updates – Stream DAG/task status via WebSocket or SSE.
🔐 Security – Add OAuth2, API keys, and role-based access.
⚡ Event Triggers – Auto-trigger agents on DAG events.
A📊 Analytics – Dashboard for DAG performance and trends.
🤖 AI Troubleshooting – Use LLMs for issue analysis and fixes.
Integrate with OpenWebUi
- install MCPO
pip install mcpo
2.create config.js in mcp folder
{
"mcpServers": {
"airflow-mcp-server": {
"command": "C:\\Users\\RakeshReddyBijjam\\pipx\\venvs\\meltano\\Scripts\\uv.EXE",
"args": [
"run",
"--with",
"mcp[cli]",
"mcp",
"run",
"C:\\Users\\RakeshReddyBijjam\\Desktop\\claude_sam\\AirTrack\\mcp\\server.py"
]
}
}
}
- Run the server
uvx mcpo --config config.json --port 8001
0
Followers
3
Repositories
0
Gists
3
Total Contributions