consult7

MCP server to consult a language model with large context size

GitHub Stars

134

User Rating

Not Rated

Forks

12

Issues

4

Views

1

Favorites

0

README
Consult7 MCP Server

Consult7 is a Model Context Protocol (MCP) server that enables AI agents to consult large context window models for analyzing extensive file collections - entire codebases, document repositories, or mixed content that exceed the current agent's context limits. Supports providers Openrouter, OpenAI, and Google.

Why Consult7?

When working with AI agents that have limited context windows (like Claude with 200K tokens), Consult7 allows them to leverage models with massive context windows to analyze large codebases or document collections that would otherwise be impossible to process in a single query.

"For Claude Code users, Consult7 is a game changer."

How it works

Consult7 recursively collects all files from a given path that match your regex pattern (including all subdirectories), assembles them into a single context, and sends them to a large context window model along with your query. The result of this query is directly fed back to the agent you are working with.

Example Use Cases
Summarize an entire codebase
  • Query: "Summarize the architecture and main components of this Python project"
  • Pattern: ".*\.py$" (all Python files)
  • Path: /Users/john/my-python-project
Find specific method definitions
  • Query: "Find the implementation of the authenticate_user method and explain how it handles password verification"
  • Pattern: ".*\.(py|js|ts)$" (Python, JavaScript, TypeScript files)
  • Path: /Users/john/backend
Analyze test coverage
  • Query: "List all the test files and identify which components lack test coverage"
  • Pattern: ".*test.*\.py$|.*_test\.py$" (test files)
  • Path: /Users/john/project
Complex analysis with thinking mode
  • Query: "Analyze the authentication flow across this codebase. Think step by step about security vulnerabilities and suggest improvements"
  • Pattern: ".*\.(py|js|ts)$"
  • Model: "gemini-2.5-flash|thinking"
  • Path: /Users/john/webapp
Installation
Claude Code

Simply run:

# OpenRouter
claude mcp add -s user consult7 uvx -- consult7 openrouter your-api-key

# Google AI
claude mcp add -s user consult7 uvx -- consult7 google your-api-key

# OpenAI
claude mcp add -s user consult7 uvx -- consult7 openai your-api-key
Claude Desktop

Add to your Claude Desktop configuration file:

{
  "mcpServers": {
    "consult7": {
      "type": "stdio",
      "command": "uvx",
      "args": ["consult7", "openrouter", "your-api-key"]
    }
  }
}

Replace openrouter with your provider choice (google or openai) and your-api-key with your actual API key.

No installation required - uvx automatically downloads and runs consult7 in an isolated environment.

Command Line Options
uvx consult7 <provider> <api-key> [--test]
  • <provider>: Required. Choose from openrouter, google, or openai
  • <api-key>: Required. Your API key for the chosen provider
  • --test: Optional. Test the API connection

The model is specified when calling the tool, not at startup. The server shows example models for your provider on startup.

Model Examples
Google

Standard models:

  • "gemini-2.5-flash" - Fast model
  • "gemini-2.5-flash-lite-preview-06-17" - Ultra fast lite model
  • "gemini-2.5-pro" - Intelligent model
  • "gemini-2.0-flash-exp" - Experimental model

With thinking mode (add |thinking suffix):

  • "gemini-2.5-flash|thinking" - Fast with deep reasoning
  • "gemini-2.5-flash-lite-preview-06-17|thinking" - Ultra fast with deep reasoning
  • "gemini-2.5-pro|thinking" - Intelligent with deep reasoning
OpenRouter

Standard models:

  • "google/gemini-2.5-pro" - Intelligent, 1M context
  • "google/gemini-2.5-flash" - Fast, 1M context
  • "google/gemini-2.5-flash-lite-preview-06-17" - Ultra fast, 1M context
  • "anthropic/claude-sonnet-4" - Claude Sonnet, 200k context
  • "openai/gpt-4.1" - GPT-4.1, 1M+ context

With reasoning mode (add |thinking suffix):

  • "anthropic/claude-sonnet-4|thinking" - Claude with 31,999 reasoning tokens
  • "google/gemini-2.5-flash-lite-preview-06-17|thinking" - Ultra fast with reasoning
  • "openai/gpt-4.1|thinking" - GPT-4.1 with reasoning effort=high
OpenAI

Standard models (include context length):

  • "gpt-4.1-2025-04-14|1047576" - 1M+ context, very fast
  • "gpt-4.1-nano-2025-04-14|1047576" - 1M+ context, ultra fast
  • "o3-2025-04-16|200k" - Advanced reasoning model
  • "o4-mini-2025-04-16|200k" - Fast reasoning model

O-series models with |thinking marker:

  • "o1-mini|128k|thinking" - Mini reasoning with |thinking marker
  • "o3-2025-04-16|200k|thinking" - Advanced reasoning with |thinking marker

Note: For OpenAI, |thinking is only supported on o-series models and serves as an informational marker. The models use reasoning tokens automatically.

Advanced: You can specify custom thinking tokens with |thinking=30000 but this is rarely needed.

Testing
# Test OpenRouter
uvx consult7 openrouter sk-or-v1-... --test

# Test Google AI
uvx consult7 google AIza... --test

# Test OpenAI
uvx consult7 openai sk-proj-... --test
Uninstalling

To remove consult7 from Claude Code (or before reinstalling):

claude mcp remove consult7 -s user
Author Information
Stefan Szeider
TU WienVienna, Austria

10

Followers

7

Repositories

0

Gists

12

Total Contributions

Top Contributors

Threads