blockbench-mcp-plugin
The Blockbench MCP plugin enables integration with an MCP server within Blockbench. Users can easily install the plugin and configure the MCP server to manage model contexts. It supports server configurations across different environments using configuration files. This allows developers to work efficiently and streamline their workflow.
GitHub Stars
6
User Rating
Not Rated
Forks
4
Issues
3
Views
0
Favorites
0
Blockbench MCP
https://github.com/user-attachments/assets/ab1b7e63-b6f0-4d5b-85ab-79d328de31db
Plugin Installation
Open Blockbench, go to File > Plugins and click the "Load Plugin from URL" and paste in this URL:
https://jasonjgardner.github.io/blockbench-mcp-plugin/mcp.js
Model Context Protocol Server
Configure experimental MCP server under Blockbench settings: Settings > General > MCP Server Port and MCP Server Endpoint
The following examples use the default values of :3000/mcp
Installation
Claude Desktop
claude_desktop_config.json
{
"mcpServers": {
"blockbench": {
"command": "npx",
"args": [
"mcp-remote",
"http://localhost:3000/mcp"
]
}
}
}
VS Code
.vscode/mcp.json
{
"servers": {
"blockbench": {
"url": "http://localhost:3000/mcp"
},
}
}
Plugin Development
Contribution
Addition or modification of tools, prompts and resources is welcome. It should be a relatively-familiar process for Blockbench contributor/plugin authors; however, does require TypeScript compilation. Bun is recommended for the task.
Dev Setup
bunx @modelcontextprotocol/inspector
The Streamable HTTP transport URL defaults to http://localhost:3000/mcp
cd ./src/mcp
bun install
bun run build
Adding Tools
// ./src/mcp/server/tools.ts
import { z } from "zod";
import { createTool } from "@/lib/factories";
createTool({
name: "tool_name",
description: "Tool description for the AI agent"
parameters: z.object({
// Parameters required to execute your tool:
examples: z.array({
// Zod schema to collect arguments.
// Does not have to be 1:1 with Blockbench
})
}),
async execute({ examples }, { reportProgress }) {
return JSON.stringify(examples.map((example, idx) => {
reportProgress({
progress: idx,
total: examples.length
});
// Do something with parameters within current context.
// Has access to Blockbench, electron, FastMCP, and other API
// Return stringified results to report to AI agent context.
return myExampleTransformFunction(example);
}));
}
});
Adding Resources
No factory function has been created yet. Refer to FactMCP's documentation for Resource examples.
Add resource-related code to ./src/mcp/server/resources.ts
Adding Prompts
No factory function has been created yet. Refer to FactMCP's documentation for Prompts examples.
Add prompt-related code to ./src/mcp/server/prompts.ts
36
Followers
55
Repositories
5
Gists
27
Total Contributions