RealtimeSTT
This is a comprehensive high-level and low-level design for your MCP-based SaaS B2B platform using the technologies you've specified.
GitHub Stars
0
User Rating
Not Rated
Forks
0
Issues
0
Views
0
Favorites
0
High-Level Design (HLD)
System Architecture Overview
Core Components
Frontend (Next.js + TypeScript)
- User Interface Layer
- State Management
- Communication Layer
Backend (FastAPI + Python)
- API Gateway
- Authentication Service
- Machine Context Protocol Integration
- LangChain/LangGraph Processing Engine
- Activity Tracking System
- Notification Service
- Data Storage Layer
Machine Context Protocol Layer
- Command Execution Service
- Permission Management
- Application Connectors
- Activity Listeners
Data Flow Architecture
- User interacts with the web interface (text/voice input)
- Frontend packages the request and sends to backend API
- Backend processes the request through LangChain/LangGraph
- If local machine interaction is needed, requests pass through MCP layer
- Results return through the same pipeline to the frontend
- Activity data is continuously collected, processed and made available through the dashboard
Key Features Detailed
Chat Interface
- Real-time messaging system with typing indicators
- Support for text, voice, and rich media responses
- History retention and context awareness
- Message threading for complex interactions
Machine Context Integration
- Secure connection to local machine
- Standardized command execution protocol
- Permission-based access control
- Application-specific connectors
- Activity monitoring
Activity Dashboard
- Financial transaction tracking
- Job application monitoring
- Time-based activity visualization
- Filtering and search capabilities
- Detailed activity inspection
Notification System
- Real-time alerts
- Customizable notification preferences
- Priority-based notification queuing
- Action-enabled notifications
Low-Level Design (LLD)
Frontend Architecture (Next.js + TypeScript)
Component Structure
src/
├── app/ # Next.js App Router
│ ├── api/ # API route handlers
│ ├── auth/ # Authentication pages
│ ├── chat/ # Chat interface
│ ├── dashboard/ # Activity dashboard
│ ├── settings/ # User settings
│ └── layout.tsx # Root layout
├── components/
│ ├── chat/ # Chat-related components
│ │ ├── ChatContainer.tsx
│ │ ├── MessageBubble.tsx
│ │ ├── InputArea.tsx
│ │ ├── VoiceInput.tsx
│ │ └── CommandSuggestions.tsx
│ ├── dashboard/ # Dashboard components
│ │ ├── ActivityFeed.tsx
│ │ ├── FinancialTracking.tsx
│ │ ├── JobApplications.tsx
│ │ └── ActivityFilters.tsx
│ ├── notifications/ # Notification components
│ │ ├── NotificationCenter.tsx
│ │ ├── NotificationItem.tsx
│ │ └── NotificationBadge.tsx
│ ├── settings/ # Settings components
│ │ ├── PermissionsManager.tsx
│ │ ├── AppConnector.tsx
│ │ └── TrackingPreferences.tsx
│ └── ui/ # Shared UI components
├── lib/
│ ├── api/ # API client
│ ├── hooks/ # Custom React hooks
│ ├── mcp/ # Machine Context Protocol client
│ ├── store/ # State management
│ └── utils/ # Utility functions
└── types/ # TypeScript type definitions
Key Interfaces
// Message types
interface Message {
id: string;
content: string;
type: 'text' | 'voice' | 'command' | 'system';
sender: 'user' | 'assistant';
timestamp: Date;
status: 'sending' | 'sent' | 'delivered' | 'read' | 'error';
metadata?: Record<string, any>;
}
// Activity tracking
interface Activity {
id: string;
type: 'financial' | 'job' | 'browser' | 'system' | 'other';
timestamp: Date;
application: string;
description: string;
details: Record<string, any>;
tags: string[];
}
// Machine Context Protocol
interface MCPCommand {
target: string;
action: string;
parameters: Record<string, any>;
requiresPermission: boolean;
timeout?: number;
}
interface MCPResponse {
success: boolean;
data?: any;
error?: string;
executionTime?: number;
}
// Permission settings
interface Permission {
application: string;
actions: string[];
granted: boolean;
expires?: Date;
}
State Management
Using React Context and custom hooks for state management:
// ChatContext.tsx
export const ChatContext = createContext<{
messages: Message[];
sendMessage: (content: string, type: string) => Promise<void>;
isProcessing: boolean;
clearHistory: () => void;
}>({
messages: [],
sendMessage: async () => {},
isProcessing: false,
clearHistory: () => {},
});
// useMCP.ts hook
export function useMCP() {
const [isConnected, setIsConnected] = useState(false);
const [permissionRequests, setPermissionRequests] = useState<Permission[]>([]);
const executeCommand = async (command: MCPCommand): Promise<MCPResponse> => {
// Implementation
};
return { isConnected, permissionRequests, executeCommand };
}
Backend Architecture (FastAPI + Python)
Directory Structure
backend/
├── app/
│ ├── api/ # API endpoints
│ │ ├── auth.py # Authentication endpoints
│ │ ├── chat.py # Chat endpoints
│ │ ├── activities.py # Activity tracking endpoints
│ │ ├── mcp.py # Machine Context Protocol endpoints
│ │ └── settings.py # User settings endpoints
│ ├── core/
│ │ ├── config.py # Application configuration
│ │ ├── security.py # Security utilities
│ │ └── events.py # Event handlers
│ ├── db/
│ │ ├── models.py # Database models
│ │ ├── crud.py # Database operations
│ │ └── session.py # Database session management
│ ├── mcp/
│ │ ├── connector.py # MCP connection handler
│ │ ├── commands.py # Command definitions
│ │ ├── permissions.py # Permission management
│ │ └── listeners.py # Activity listeners
│ ├── services/
│ │ ├── chat.py # Chat processing service
│ │ ├── activities.py # Activity tracking service
│ │ └── notifications.py # Notification service
│ ├── lang/
│ │ ├── chains.py # LangChain components
│ │ ├── graphs.py # LangGraph definitions
│ │ ├── prompts.py # Prompt templates
│ │ └── agents.py # Agent definitions
│ └── main.py # Application entry point
├── alembic/ # Database migrations
├── tests/ # Test suite
└── requirements.txt # Dependencies
API Endpoints
# app/api/chat.py
from fastapi import APIRouter, Depends, HTTPException
from app.services.chat import ChatService
from app.core.security import get_current_user
router = APIRouter(prefix="/chat", tags=["chat"])
@router.post("/message")
async def process_message(
message: ChatMessageCreate,
current_user: User = Depends(get_current_user),
chat_service: ChatService = Depends()
):
"""Process a new chat message and return response"""
try:
response = await chat_service.process_message(
user_id=current_user.id,
message=message.content,
message_type=message.type
)
return response
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
LangChain/LangGraph Integration
# app/lang/graphs.py
from langgraph.graph import StateGraph
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.schema import StrOutputParser
from app.mcp.connector import MCPConnector
def create_chat_graph(mcp_connector: MCPConnector):
# Define nodes
llm = ChatOpenAI(temperature=0)
# Command classifier node
command_classifier_prompt = ChatPromptTemplate.from_template(
"""Determine if this is a general question or a machine command:
{message}
Output: [GENERAL] or [COMMAND]
"""
)
command_classifier = command_classifier_prompt | llm | StrOutputParser()
# Command executor node
def execute_command(state):
command = state["parsed_command"]
result = mcp_connector.execute(command)
return {"execution_result": result}
# Command parser node
command_parser_prompt = ChatPromptTemplate.from_template(
"""Extract the command from this user message:
{message}
Target application:
Action:
Parameters:
"""
)
command_parser = command_parser_prompt | llm | StrOutputParser()
# Response generator node
response_generator_prompt = ChatPromptTemplate.from_template(
"""Generate a helpful response based on the context:
User message: {message}
Command execution result: {execution_result}
Response:
"""
)
response_generator = response_generator_prompt | llm | StrOutputParser()
# Define graph
workflow = StateGraph(input_keys=["message"])
# Add nodes
workflow.add_node("classifier", command_classifier)
workflow.add_node("parser", command_parser)
workflow.add_node("executor", execute_command)
workflow.add_node("generator", response_generator)
# Add edges
workflow.add_conditional_edges(
"classifier",
{
"[COMMAND]": "parser",
"[GENERAL]": "generator"
}
)
workflow.add_edge("parser", "executor")
workflow.add_edge("executor", "generator")
# Set entry and output
workflow.set_entry_point("classifier")
workflow.set_finish_point("generator")
return workflow.compile()
Machine Context Protocol Implementation
# app/mcp/connector.py
from typing import Dict, Any, List
import asyncio
import websockets
import json
from app.db.models import Permission
class MCPConnector:
def __init__(self, host: str = "localhost", port: int = 8765):
self.host = host
self.port = port
self.connection = None
self.active_listeners = {}
async def connect(self):
"""Establish connection to the MCP service"""
self.connection = await websockets.connect(f"ws://{self.host}:{self.port}")
return self.connection
async def execute(self, command: Dict[str, Any], user_id: str) -> Dict[str, Any]:
"""Execute a command through MCP"""
# Check permissions
has_permission = await self.check_permission(
user_id=user_id,
application=command["target"],
action=command["action"]
)
if not has_permission:
return {
"success": False,
"error": "Permission denied",
"requires_permission": True
}
# Send command
await self.connection.send(json.dumps({
"type": "command",
"data": command
}))
# Get response
response = await self.connection.recv()
return json.loads(response)
async def register_listener(self, activity_type: str, callback):
"""Register a listener for specific activity types"""
listener_id = f"{activity_type}_{id(callback)}"
await self.connection.send(json.dumps({
"type": "register_listener",
"data": {"activity_type": activity_type}
}))
self.active_listeners[listener_id] = callback
# Start listener loop
asyncio.create_task(self._listener_loop(listener_id, activity_type))
return listener_id
async def _listener_loop(self, listener_id: str, activity_type: str):
"""Background task for handling activity events"""
while listener_id in self.active_listeners:
try:
message = await self.connection.recv()
data = json.loads(message)
if data["type"] == "activity" and data["data"]["activity_type"] == activity_type:
callback = self.active_listeners[listener_id]
await callback(data["data"])
except Exception as e:
print(f"Listener error: {e}")
await asyncio.sleep(1)
Machine Context Protocol Specification
Connection Protocol
- Websocket-based connection on localhost:8765
- JSON message format
- Authentication via local token exchange
Command Structure
{
"type": "command",
"data": {
"target": "browser",
"action": "navigate",
"parameters": {
"url": "https://example.com"
}
}
}
Activity Event Structure
{
"type": "activity",
"data": {
"activity_type": "financial",
"timestamp": "2025-04-04T12:34:56Z",
"application": "browser",
"details": {
"site": "amazon.com",
"amount": 49.99,
"category": "electronics"
}
}
}
Permission Request Structure
{
"type": "permission_request",
"data": {
"target": "filesystem",
"action": "read",
"context": "The assistant is trying to access your documents folder",
"one_time": false
}
}
Database Schema
# app/db/models.py
from sqlalchemy import Column, String, DateTime, Boolean, JSON, ForeignKey
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship
import datetime
Base = declarative_base()
class User(Base):
__tablename__ = "users"
id = Column(String, primary_key=True)
email = Column(String, unique=True, index=True)
name = Column(String)
created_at = Column(DateTime, default=datetime.datetime.utcnow)
chats = relationship("Chat", back_populates="user")
permissions = relationship("Permission", back_populates="user")
activities = relationship("Activity", back_populates="user")
class Chat(Base):
__tablename__ = "chats"
id = Column(String, primary_key=True)
user_id = Column(String, ForeignKey("users.id"))
title = Column(String)
created_at = Column(DateTime, default=datetime.datetime.utcnow)
updated_at = Column(DateTime, default=datetime.datetime.utcnow, onupdate=datetime.datetime.utcnow)
user = relationship("User", back_populates="chats")
messages = relationship("Message", back_populates="chat")
class Message(Base):
__tablename__ = "messages"
id = Column(String, primary_key=True)
chat_id = Column(String, ForeignKey("chats.id"))
content = Column(String)
type = Column(String) # text, voice, command, system
sender = Column(String) # user, assistant
timestamp = Column(DateTime, default=datetime.datetime.utcnow)
metadata = Column(JSON, nullable=True)
chat = relationship("Chat", back_populates="messages")
class Permission(Base):
__tablename__ = "permissions"
id = Column(String, primary_key=True)
user_id = Column(String, ForeignKey("users.id"))
application = Column(String)
action = Column(String)
granted = Column(Boolean, default=False)
created_at = Column(DateTime, default=datetime.datetime.utcnow)
expires_at = Column(DateTime, nullable=True)
user = relationship("User", back_populates="permissions")
class Activity(Base):
__tablename__ = "activities"
id = Column(String, primary_key=True)
user_id = Column(String, ForeignKey("users.id"))
type = Column(String) # financial, job, browser, system, other
timestamp = Column(DateTime)
application = Column(String)
description = Column(String)
details = Column(JSON)
user = relationship("User", back_populates="activities")
System Flow
flowchart TD
%% Main User Flow
A[User Opens Web App] --> B[Authentication]
B --> |Success| C[Main Chat Interface]
B --> |Failure| B1[Show Login Error]
B1 --> B
%% Core Chat Flow
C --> D{User Input Type}
D --> |Text| E1[Process Text Input]
D --> |Voice| E2[Convert Speech to Text]
E2 --> E1
E1 --> F[Frontend Processing]
F --> G[Send to Backend API]
%% Backend Processing
G --> H[LangChain/LangGraph Processing]
H --> I{Request Type}
I --> |General Query| J[Generate Response]
I --> |Machine Command| K[Parse Command]
%% Machine Context Protocol Flow
K --> L[MCP Connection Check]
L --> |Not Connected| L1[Establish MCP Connection]
L1 --> L2
L --> |Connected| L2[Permission Check]
L2 --> |Has Permission| M[Execute Command via MCP]
L2 --> |No Permission| N[Request Permission]
N --> O{User Decision}
O --> |Grant| O1[Save Permission]
O1 --> M
O --> |Deny| O2[Generate Permission Denied Message]
%% Results Processing
M --> P[Process Command Results]
J --> Q[Format Response]
P --> Q
O2 --> Q
Q --> R[Send Response to Frontend]
R --> S[Update Chat Interface]
%% Background Activity Tracking
T[MCP Activity Listeners] --> U[Activity Event Captured]
U --> V[Process Activity Data]
V --> W[Store in Database]
W --> X[Update Activity Metrics]
X --> Y{Notification Needed?}
Y --> |Yes| Z[Generate Notification]
Z --> AA[Deliver to User]
Y --> |No| W
%% Dashboard Interaction
AB[User Opens Dashboard] --> AC[Load Activity Data]
AC --> AD{Selected View}
AD --> |Financial| AE[Show Financial Transactions]
AD --> |Job Applications| AF[Show Job Applications]
AD --> |Combined| AG[Show All Activities]
AE & AF & AG --> AH[Apply Filters/Search]
AH --> AI[Display Filtered Results]
AI --> AJ[User Selects Activity]
AJ --> AK[Show Detailed View]
%% Settings Flow
AL[User Opens Settings] --> AM{Settings Category}
AM --> |Permissions| AN[Show App Permissions]
AM --> |Apps| AO[Show Connected Apps]
AM --> |Tracking| AP[Show Tracking Settings]
AM --> |Notifications| AQ[Show Notification Settings]
AN & AO & AP & AQ --> AR[User Changes Setting]
AR --> AS[Validate Changes]
AS --> |Valid| AT[Save Changes]
AS --> |Invalid| AU[Show Error]
AT --> AV[Apply New Settings]
AU --> AR
%% Error Handling
ERRORS[Error Handling] --> ERR1[Connection Error]
ERRORS --> ERR2[Permission Error]
ERRORS --> ERR3[Execution Error]
ERR1 & ERR2 & ERR3 --> ERR4[Generate Error Message]
ERR4 --> ERR5[Log Error]
ERR5 --> ERR6[Show User Friendly Message]
ERR6 --> ERR7{Recoverable?}
ERR7 --> |Yes| ERR8[Suggest Recovery Steps]
ERR7 --> |No| ERR9[Suggest Alternatives]
Security Considerations
Local Machine Security
- Strict permission model for accessing local resources
- All machine commands require explicit user authorization
- Time-limited permissions with expiration dates
- Command audit logging
Data Privacy
- Activity data stored locally by default
- End-to-end encryption for all communications
- Option to disable tracking for sensitive applications
- Data retention policies with automatic cleanup
Authentication
- Multi-factor authentication support
- Session timeouts for inactive users
- Permission revocation mechanisms
- Limited retry attempts for failed authentications
Deployment Architecture
For local deployment:
- Frontend served through Next.js development server or production build
- Backend running as FastAPI service
- MCP running as a separate process with local websocket server
- Local database (SQLite or PostgreSQL)
For production or shared deployment:
- Frontend hosted on Vercel or similar platform
- Backend deployed as containerized service (Docker)
- MCP client deployed as desktop application with secure connection
- Managed database service
Implementation Plan
Phase 1: Core Chat Interface
- Set up Next.js frontend with TypeScript
- Implement basic chat UI components
- Create FastAPI backend with LangChain integration
- Establish basic authentication system
Phase 2: Machine Context Protocol
- Develop MCP specification
- Implement websocket-based connection
- Create permission management system
- Build basic command execution flow
Phase 3: Activity Tracking
- Implement activity listeners
- Create database models for activities
- Develop activity dashboard UI
- Build notification system
Phase 4: Advanced Features
- Voice input processing
- Enhanced visualization for activity data
- User preferences and settings
- Performance optimizations
Machine Context Protocol Implementation with Advanced Tech
Architecture with Advanced Technologies
Core Technologies Added
- Apache Kafka: For event streaming and reliable messaging between components
- Redis: For caching, pub/sub capabilities, and session management
- gRPC: For efficient, typed communication between MCP Client and backend
- Vector Database (e.g., Pinecone): For semantic search of past activities and commands
- Docker & Kubernetes: For containerization and deployment
- WebRTC: For direct peer-to-peer connections when needed
Advanced Tech MCP
1. Kafka Integration
Kafka provides a robust event streaming platform that significantly improves the MCP implementation:
- Command Queue: Commands from backend to MCP Client flow through Kafka topics, ensuring delivery even if connections drop
- Activity Streaming: All user activities are streamed through Kafka, allowing multiple consumers (analytics, dashboard, notifications)
- Event Sourcing: Store all commands and activities as events, enabling replay and audit capabilities
- Partition by User: Each user gets a dedicated Kafka partition for their activities, improving scalability
2. Redis Enhancement
Redis provides fast in-memory operations for various MCP needs:
- Permission Cache: Cache user permissions for fast access
- Command Results Cache: Store recent command results to avoid redundant processing
- Session Management: Maintain user sessions and MCP connection states
- Pub/Sub Channel: Secondary communication path for urgent messages
3. MCP Client Communication Improvements
- Primary gRPC Channel: Typed, efficient communication for commands and responses
- WebSocket Fallback: For environments where gRPC might be blocked
- WebRTC Direct Connection: For high-bandwidth operations (file transfers, screen sharing)
flowchart TD
subgraph "User's Machine"
MCP["MCP Client"]
FSC["Filesystem Connector"]
BC["Browser Connector"]
AC["Application Connectors"]
AL["Activity Listeners"]
LC["Local Cache (SQLite)"]
MCP --- FSC & BC & AC
MCP --- AL
MCP --- LC
end
subgraph "Communication Layer"
GRPC["gRPC Service"]
WS["WebSocket Server"]
WEBRTC["WebRTC Connection"]
KAFKA["Kafka Cluster"]
GRPC & WS & WEBRTC --- MCP
end
subgraph "Backend Infrastructure"
API["API Gateway"]
AUTH["Auth Service"]
CMDP["Command Processor"]
ACTP["Activity Processor"]
PERMS["Permission Service"]
NOTIF["Notification Service"]
CACHE["Redis Cache"]
API --- AUTH
API --- CMDP & ACTP & PERMS
CMDP & ACTP --- NOTIF
CACHE --- CMDP & ACTP & PERMS & NOTIF
end
subgraph "Storage Layer"
PGDB["PostgreSQL"]
TSDB["TimescaleDB"]
VDB["Vector DB"]
BLOB["Blob Storage"]
PGDB --- PERMS & API
TSDB --- ACTP
VDB --- CMDP & ACTP
BLOB --- API
end
subgraph "AI Processing"
LLM["LLM Service"]
LC["LangChain"]
LG["LangGraph"]
LC --- LLM
LG --- LC
LG --- CMDP
end
KAFKA --- MCP
KAFKA --- ACTP & CMDP
GRPC & WS --- API
WEBRTC --- API
subgraph "Frontend"
WEB["Web Application"]
DASH["Dashboard"]
WEB --- DASH
end
WEB --- API
UML Class Diagram with Advanced Tech
classDiagram
class MCPClient {
-GRPCServer grpcServer
-WebSocketServer wsServer
-KafkaProducer kafkaProducer
-KafkaConsumer kafkaConsumer
-Map~string, ApplicationConnector~ connectors
-Map~string, ActivityListener~ listeners
-PermissionManager permManager
-LocalCache cache
+start()
+stop()
+executeCommand(Command) Response
+registerListener(ActivityType, Callback)
-handleKafkaMessages()
-processCommand(Command)
}
class LocalCache {
-SQLiteConnection connection
+get(string key) any
+set(string key, any value)
+invalidate(string key)
+clearExpired()
}
class KafkaProducer {
-string bootstrapServers
-string clientId
+sendMessage(string topic, Message message)
+flush()
+close()
}
class KafkaConsumer {
-string bootstrapServers
-string groupId
-List~string~ topics
-MessageHandler handler
+subscribe(List~string~ topics)
+poll(Duration timeout)
+commit()
+close()
}
class ApplicationConnector {
<<interface>>
+executeAction(String, Parameters) Result
+isAvailable() bool
+getCapabilities() List~Capability~
}
class AdvancedFileSystemConnector {
-WatchService fileWatcher
+executeAction(String, Parameters) Result
+isAvailable() bool
+getCapabilities() List~Capability~
-indexFiles(Directory)
-setupFileWatchers()
-handleFileChange(Path)
}
class BrowserExtensionConnector {
-WebSocketClient extensionSocket
+executeAction(String, Parameters) Result
+isAvailable() bool
+getCapabilities() List~Capability~
-connectToExtension()
-handleExtensionMessages()
}
class ActivityManager {
-List~ActivityListener~ listeners
-KafkaProducer producer
-VectorDB vectorDB
+registerListener(ActivityType, Callback)
+unregisterListener(string listenerId)
+reportActivity(Activity activity)
+searchSimilarActivities(string query) List~Activity~
}
class DistributedPermissionManager {
-RedisClient redisClient
-PostgreSQLClient pgClient
+checkPermission(UserId, Application, Action) bool
+requestPermission(UserId, Application, Action) PermissionRequest
+grantPermission(RequestId, bool)
+revokePermission(PermissionId)
-cachePermission(Permission)
-invalidateCache(UserId, Application)
}
class BackendMCPConnector {
-GRPCClient grpcClient
-WebSocketClient wsClient
-KafkaAdmin kafkaAdmin
-KafkaProducer producer
-KafkaConsumer consumer
-ConnectionStatus status
+connect() bool
+disconnect()
+executeCommand(Command) CommandFuture
+streamCommands(CommandStream) ResponseStream
+registerActivityCallback(ActivityType, Callback)
-createUserTopics(UserId)
-handleResponse(Response)
}
class CommandProcessor {
-LangGraph langGraph
-BackendMCPConnector mcpConnector
-VectorDB commandHistoryDB
-RedisCache resultsCache
+processMessage(Message) ProcessingResult
+cancelCommand(CommandId)
-parseCommand(Message) Command
-checkCache(Command) CachedResult
-executeViaLangGraph(Command) ProcessedCommand
-dispatchCommand(ProcessedCommand) CommandFuture
}
class ActivityProcessor {
-KafkaConsumer consumer
-TimescaleDB timescaleDB
-VectorDB vectorDB
-NotificationService notifService
+processActivityStream()
+queryActivities(Query) ActivityResult
+generateInsights(UserId) Insights
-vectorizeActivity(Activity) Vector
-detectAnomalies(Activity) bool
-triggerNotifications(Activity)
}
MCPClient *-- LocalCache
MCPClient *-- KafkaProducer
MCPClient *-- KafkaConsumer
MCPClient *-- DistributedPermissionManager
MCPClient o-- ApplicationConnector
MCPClient *-- ActivityManager
ApplicationConnector <|-- AdvancedFileSystemConnector
ApplicationConnector <|-- BrowserExtensionConnector
ActivityManager o-- KafkaProducer
BackendMCPConnector *-- KafkaProducer
BackendMCPConnector *-- KafkaConsumer
CommandProcessor *-- BackendMCPConnector
ActivityProcessor *-- KafkaConsumer
Detailed Implementation Components
1. MCP Client Architecture
The MCP Client now operates as a sophisticated local agent with:
- Multi-protocol Support: gRPC (primary), WebSockets (fallback), and WebRTC (high-bandwidth operations)
- Local Caching: SQLite database for caching operations when offline
- Kafka Integration: Producers and consumers for reliable event streaming
- Intelligent Command Routing: Routes commands to appropriate application connectors
- Smart Activity Detection: Uses ML models to identify important activities
- Extension System: Pluggable architecture for adding new application connectors
- Distributed Tracing: OpenTelemetry integration for debugging and performance monitoring
2. Backend Services Architecture
The backend is now composed of specialized microservices:
- API Gateway: Routes requests to appropriate services
- Command Processor: Handles command parsing, validation, and execution
- Activity Processor: Processes and analyzes activity streams
- Permission Service: Manages user permissions with Redis caching
- Notification Service: Generates and delivers notifications
- LLM Service: Provides natural language processing capabilities
3. Data Storage Strategy
Multiple specialized databases for different data types:
- PostgreSQL: User data, permissions, and general structured data
- TimescaleDB: Time-series data for activities and metrics
- Vector Database: Semantic search for activities and command history
- Redis: Caching and real-time data
- Kafka: Event streaming and command/activity logs
- Blob Storage: Large files and binary data
4. Interaction Flow with Advanced Tech
Command Flow
User → Web App → API Gateway → Command Processor → LangGraph → Command Processor → Kafka → MCP Client → Application Connector → Local Application → Results → MCP Client → Kafka → Command Processor → API Gateway → Web App → User
Activity Tracking Flow
Local Activity → Activity Listener → MCP Client → Kafka → Activity Processor → TimescaleDB & Vector DB → Notification Service (if needed) → API Gateway → Web App Dashboard
5. Scalability and Reliability Features
- Horizontal Scaling: All components can scale independently
- Fault Tolerance: Kafka ensures no commands or activities are lost
- High Availability: Critical components are replicated
- Offline Support: MCP Client can operate offline and sync when reconnected
- Load Balancing: Distribute load across multiple instances
- Circuit Breaking: Prevent cascade failures with circuit breakers
Implementation Benefits
- Real-time Processing: Stream processing gives immediate feedback
- Scalability: Handle thousands of users with distributed architecture
- Reliability: Fault-tolerant design with message persistence
- Performance: Efficient protocols and caching improve response times
- Analytics: Enhanced activity analysis with streaming analytics
- Security: Improved permission management with distributed validation
- Extensibility: Plugin architecture for new connectors and features
Deployment Architecture
The system can be deployed using Kubernetes for container orchestration:-
- MCP Client: Distributed as native application for Windows/macOS/Linux
- Backend Services: Deployed as containers in Kubernetes cluster
- Kafka & Databases: Managed services or self-hosted in Kubernetes
- Frontend: Deployed to CDN with server-side rendering
sequenceDiagram
actor User
participant Frontend as NextjsApplication
participant API as ApiClient
participant Gateway as ApiGateway
participant ChatCtrl as ChatController
participant CmdProc as CommandProcessor
participant LangGraph as LangGraphService
participant MCPReg as MCPRegistry
participant MCPConn as MCPConnection
participant Kafka as KafkaService
participant MCPCli as MCPClient
participant ConnReg as ConnectorRegistry
User->>Frontend: Send message
Frontend->>API: sendMessage(Message)
API->>Gateway: HTTP POST /api/chat
Gateway->>Gateway: validateToken(Token)
Gateway->>ChatCtrl: processMessage(Message)
ChatCtrl->>CmdProc: processCommand(Command)
alt Complex Language Task
CmdProc->>LangGraph: executeGraph(graphName, input)
LangGraph-->>CmdProc: CommandResult
else Machine Command
CmdProc->>MCPReg: getMCP(UserId)
MCPReg-->>CmdProc: MCPConnection
CmdProc->>MCPConn: sendCommand(Command)
Note over MCPConn,Kafka: Command transmitted via Kafka
MCPConn->>Kafka: Producer.send(commandTopic, Command)
Kafka-->>MCPCli: Consumer.poll() returns Command
MCPCli->>ConnReg: executeCommand(Command)
ConnReg-->>MCPCli: Result
Note over MCPCli,Kafka: Result transmitted via Kafka
MCPCli->>Kafka: Producer.send(resultTopic, Result)
Kafka-->>MCPConn: Consumer.poll() returns Result
MCPConn-->>CmdProc: CommandResult
end
CmdProc-->>ChatCtrl: CommandResult
ChatCtrl-->>Gateway: Response
Gateway-->>API: HTTP Response
API-->>Frontend: Response
Frontend-->>User: Display response
par Activity Reporting
MCPCli->>MCPCli: ActivityManager.reportActivity()
MCPCli->>Kafka: Producer.send(activityTopic, Activity)
Note right of Kafka: ActivityProcessor consumes activities asynchronously
end
17
Followers
90
Repositories
0
Gists
9
Total Contributions