lightrag-mcp

LightRAG MCP Serverは、LightRAG APIとMCP互換クライアントの間のブリッジとして機能します。このサーバーは、情報検索、ドキュメント管理、知識グラフ操作、APIの監視などの機能を提供し、AIツールとの統合を容易にします。

GitHubスター

56

ユーザー評価

未評価

フォーク

18

イシュー

3

閲覧数

1

お気に入り

0

README

MseeP.ai Security Assessment Badge

LightRAG MCP Server

MCP server for integrating LightRAG with AI tools. Provides a unified interface for interacting with LightRAG API through the MCP protocol.

Description

LightRAG MCP Server is a bridge between LightRAG API and MCP-compatible clients. It allows using LightRAG (Retrieval-Augmented Generation) capabilities in various AI tools that support the MCP protocol.

Key Features
  • Information Retrieval: Execute semantic and keyword queries to documents
  • Document Management: Upload, index, and track document status
  • Knowledge Graph Operations: Manage entities and relationships in the knowledge graph
  • Monitoring: Check LightRAG API status and document processing
Installation

This server is designed to be used as an MCP server and should be installed in a virtual environment using uv, not as a system-wide package.

Development Installation
# Create a virtual environment
uv venv --python 3.11

# Install the package in development mode
uv pip install -e .
Requirements
  • Python 3.11+
  • Running LightRAG API server
Usage

Important: LightRAG MCP server should only be run as an MCP server through an MCP client configuration file (mcp-config.json).

Command Line Options

The following arguments are available when configuring the server in mcp-config.json:

  • --host: LightRAG API host (default: localhost)
  • --port: LightRAG API port (default: 9621)
  • --api-key: LightRAG API key (optional)
Integration with LightRAG API

The MCP server requires a running LightRAG API server. Start it as follows:

# Create virtual environment
uv venv --python 3.11

# Install dependencies
uv pip install -r LightRAG/lightrag/api/requirements.txt

# Start LightRAG API
uv run LightRAG/lightrag/api/lightrag_server.py --host localhost --port 9621 --working-dir ./rag_storage --input-dir ./input --llm-binding openai --embedding-binding openai --log-level DEBUG
Setting up as MCP server

To set up LightRAG MCP as an MCP server, add the following configuration to your MCP client configuration file (e.g., mcp-config.json):

Using uvenv (uvx):
{
  "mcpServers": {
    "lightrag-mcp": {
      "command": "uvx",
      "args": [
        "lightrag_mcp",
        "--host",
        "localhost",
        "--port",
        "9621",
        "--api-key",
        "your_api_key"
      ]
    }
  }
}
Development
{
  "mcpServers": {
    "lightrag-mcp": {
      "command": "uv",
      "args": [
        "--directory",
        "/path/to/lightrag_mcp",
        "run",
        "src/lightrag_mcp/main.py",
        "--host",
        "localhost",
        "--port",
        "9621",
        "--api-key",
        "your_api_key"
      ]
    }
  }
}

Replace /path/to/lightrag_mcp with the actual path to your lightrag-mcp directory.

Available MCP Tools
Document Queries
  • query_document: Execute a query to documents through LightRAG API
Document Management
  • insert_document: Add text directly to LightRAG storage
  • upload_document: Upload document from file to the /input directory
  • insert_file: Add document from file directly to storage
  • insert_batch: Add batch of documents from directory
  • scan_for_new_documents: Start scanning the /input directory for new documents
  • get_documents: Get list of all uploaded documents
  • get_pipeline_status: Get status of document processing in pipeline
Knowledge Graph Operations
  • get_graph_labels: Get labels (node and relationship types) from knowledge graph
  • create_entities: Create multiple entities in knowledge graph
  • edit_entities: Edit multiple existing entities in knowledge graph
  • delete_by_entities: Delete multiple entities from knowledge graph by name
  • delete_by_doc_ids: Delete all entities and relationships associated with multiple documents
  • create_relations: Create multiple relationships between entities in knowledge graph
  • edit_relations: Edit multiple relationships between entities in knowledge graph
  • merge_entities: Merge multiple entities into one with relationship migration
Monitoring
  • check_lightrag_health: Check LightRAG API status
Development
Installing development dependencies
uv pip install -e ".[dev]"
Running linters
ruff check src/
mypy src/
License

MIT