st_rag_mcp

st_rag_mcpは、Pythonを用いて効率的なコード生成を支援するツールです。ユーザーは、簡単にカスタマイズ可能なテンプレートを利用して、迅速にコードを作成できます。特に、データ処理やAPI連携に強みを持ち、開発者の生産性を向上させることを目的としています。

GitHubスター

11

ユーザー評価

未評価

お気に入り

0

閲覧数

19

フォーク

3

イシュー

0

README
RAG MCP

The RAG system is particularly well-designed, using sentence transformers to build rich contextual embeddings and performing semantic search to find the most relevant tools for each query. This makes the system much more robust than traditional keyword-based approaches.

What is MCP

MCP stands for Model Context protocol, it helps provide contexts to LLM model for tool-use.

MCP Arch

Architecture Diagram

MCP with RAG

RAG MCP Arch

The Mermaid diagram illustrates:

  • 7 Distinct Layers with color coding for easy understanding
  • Complete Data Flow from user input through RAG processing to tool execution
  • Decision Tree Logic showing how queries are routed through different parsing modes
  • RAG Integration highlighting how semantic search enhances tool selection
  • Multi-LLM Support showing integration with Google, OpenAI, and Anthropic
  • MCP Server Integration with tool discovery and execution
  • Data Persistence including SQLite storage and caching mechanisms
Key Features

RAG MCP UI

  1. Intelligent Tool Selection using RAG to find relevant tools dynamically
  2. Flexible Parsing Strategy with fallback mechanisms (RAG → LLM → Rule-based)
  3. Comprehensive Logging for debugging and performance analysis
  4. Caching Strategy for efficient server discovery
  5. Multi-Provider LLM Support for flexibility and redundancy
Setup
# create a virtual environment
conda create -n mcp
conda activate mcp

# obtain source code
git clone https://github.com/digital-duck/st_rag_mcp.git
cd st_rag_mcp
pip install -r requirements.txt

# open 1st terminal
cd src
python mcp_server.py

# in 2nd terminal
conda activate mcp
cd src
streamlit run mcp_client.py
Demo Video
References