DeepResearchMCP
Deep Research MCP is an intelligent research assistant built on the Model Context Protocol (MCP) that performs comprehensive, multi-step research on any topic.
GitHubスター
15
ユーザー評価
未評価
フォーク
7
イシュー
3
閲覧数
1
お気に入り
0
DeepResearch MCP
📚 Overview
DeepResearch MCP is a powerful research assistant built on the Model Context Protocol (MCP). It conducts intelligent, iterative research on any topic through web searches, analysis, and comprehensive report generation.
🌟 Key Features
- Intelligent Topic Exploration - Automatically identifies knowledge gaps and generates focused search queries
- Comprehensive Content Extraction - Enhanced web scraping with improved content organization
- Structured Knowledge Processing - Preserves important information while managing token usage
- Scholarly Report Generation - Creates detailed, well-structured reports with executive summaries, analyses, and visualizations
- Complete Bibliography - Properly cites all sources with numbered references
- Adaptive Content Management - Automatically manages content to stay within token limits
- Error Resilience - Recovers from errors and generates partial reports when full processing isn't possible
🛠️ Architecture
┌────────────────────┐ ┌─────────────────┐ ┌────────────────┐
│ │ │ │ │ │
│ MCP Server Layer ├────►│ Research Service├────►│ Search Service │
│ (Tools & Prompts) │ │ (Session Mgmt) │ │ (Firecrawl) │
│ │ │ │ │ │
└────────────────────┘ └─────────┬───────┘ └────────────────┘
│
▼
┌─────────────────┐
│ │
│ OpenAI Service │
│ (Analysis/Rpt) │
│ │
└─────────────────┘
💻 Installation
Prerequisites
- Node.js 18 or higher
- OpenAI API key
- Firecrawl API key
Setup Steps
Clone the repository
git clone <repository-url> cd deep-research-mcp
Install dependencies
npm install
Configure environment variables
cp .env.example .env
Edit the
.env
file and add your API keys:OPENAI_API_KEY=sk-your-openai-api-key FIRECRAWL_API_KEY=your-firecrawl-api-key
Build the project
npm run build
🚀 Usage
Running the MCP Server
Start the server on stdio for MCP client connections:
npm start
Using the Example Client
Run research on a specific topic with a specified depth:
npm run client "Your research topic" 3
Parameters:
- First argument: Research topic or query
- Second argument: Research depth (number of iterations, default: 2)
- Third argument (optional): "complete" to use the complete-research tool (one-step process)
Example:
npm run client "the impact of climate change on coral reefs" 3 complete
Example Output
The DeepResearch MCP will produce a comprehensive report that includes:
- Executive Summary - Concise overview of the research findings
- Introduction - Context and importance of the research topic
- Methodology - Description of the research approach
- Comprehensive Analysis - Detailed examination of the topic
- Comparative Analysis - Visual comparison of key aspects
- Discussion - Interpretation of findings and implications
- Limitations - Constraints and gaps in the research
- Conclusion - Final insights and recommendations
- Bibliography - Complete list of sources with URLs
🔧 MCP Integration
Available MCP Resources
Resource Path | Description |
---|---|
research://state/{sessionId} |
Access the current state of a research session |
research://findings/{sessionId} |
Access the collected findings for a session |
Available MCP Tools
Tool Name | Description | Parameters |
---|---|---|
initialize-research |
Start a new research session | query : string, depth : number |
execute-research-step |
Execute the next research step | sessionId : string |
generate-report |
Create a final report | sessionId : string, timeout : number (optional) |
complete-research |
Execute the entire research process | query : string, depth : number, timeout : number (optional) |
🖥️ Claude Desktop Integration
DeepResearch MCP can be integrated with Claude Desktop to provide direct research capabilities to Claude.
Configuration Steps
Copy the sample configuration
cp claude_desktop_config_sample.json ~/path/to/claude/desktop/config/directory/claude_desktop_config.json
Edit the configuration file
Update the path to point to your installation of deep-research-mcp and add your API keys:
{ "mcpServers": { "deep-research": { "command": "node", "args": [ "/absolute/path/to/your/deep-research-mcp/dist/index.js" ], "env": { "FIRECRAWL_API_KEY": "your-firecrawler-api-key", "OPENAI_API_KEY": "your-openai-api-key" } } } }
Restart Claude Desktop
After saving the configuration, restart Claude Desktop for the changes to take effect.
Using with Claude Desktop
Now you can ask Claude to perform research using commands like:
Can you research the impact of climate change on coral reefs and provide a detailed report?
📋 Sample Client Code
import { Client } from "@modelcontextprotocol/sdk/client/index.js";
import { StdioClientTransport } from "@modelcontextprotocol/sdk/client/stdio.js";
async function main() {
// Connect to the server
const transport = new StdioClientTransport({
command: "node",
args: ["dist/index.js"]
});
const client = new Client({ name: "deep-research-client", version: "1.0.0" });
await client.connect(transport);
// Initialize research
const initResult = await client.callTool({
name: "initialize-research",
arguments: {
query: "The impact of artificial intelligence on healthcare",
depth: 3
}
});
// Parse the response to get sessionId
const { sessionId } = JSON.parse(initResult.content[0].text);
// Execute steps until complete
let currentDepth = 0;
while (currentDepth < 3) {
const stepResult = await client.callTool({
name: "execute-research-step",
arguments: { sessionId }
});
const stepInfo = JSON.parse(stepResult.content[0].text);
currentDepth = stepInfo.currentDepth;
console.log(`Completed step ${stepInfo.currentDepth}/${stepInfo.maxDepth}`);
}
// Generate final report with timeout
const report = await client.callTool({
name: "generate-report",
arguments: {
sessionId,
timeout: 180000 // 3 minutes timeout
}
});
console.log("Final Report:");
console.log(report.content[0].text);
}
main().catch(console.error);
🔍 Troubleshooting
Common Issues
Token Limit Exceeded: For very large research topics, you may encounter OpenAI token limit errors. Try:
- Reducing the research depth
- Using more specific queries
- Breaking complex topics into smaller sub-topics
Timeout Errors: For complex research, the process may time out. Solutions:
- Increase the timeout parameters in tool calls
- Use the
complete-research
tool with a longer timeout - Process research in smaller chunks
API Rate Limits: If you encounter rate limit errors from OpenAI or Firecrawl:
- Implement a delay between research steps
- Use an API key with higher rate limits
- Retry with exponential backoff
📝 License
ISC
🙏 Acknowledgements
- Built with Model Context Protocol
- Powered by OpenAI and Firecrawl