chatframe

Chatframeは、データシステムとシームレスに接続し、コミュニケーション体験を向上させるための強力なチャットAIプラットフォームです。高度なAI技術を駆使し、自然な対話を提供します。MCP技術を完全にサポートしており、ビジネス効率を向上させるための最適な選択肢です。

GitHubスター

0

ユーザー評価

未評価

お気に入り

0

閲覧数

24

フォーク

0

イシュー

0

README
ChatFrame

A cross-platform desktop chatbot that unifies access to multiple LLM providers, supports MCP (Model Context Protocol) servers, and provides built-in retrieval-augmented generation (RAG) for local files. Available for macOS (Apple Silicon & Intel) and Windows (x86_64).

Overview

ChatFrame delivers a single, polished interface for interacting with language models while giving users full control over their data. A plug-in system for custom tools via MCP and out-of-the-box RAG let you turn any PDF, text, or code file into searchable context—without uploading data to third-party services.

Quick Start
  1. Download the latest release for your OS from chatframe.co.
  2. Launch the app and open Providers to add your API keys. You can validate your configuration by clicking Verify.
  3. Click the first Chat button one the left to start
Supported LLM Providers
  • DeepSeek
  • OpenAI
  • Anthropic
  • xAI
  • OpenRouter
  • Groq
  • Moonshot
  • Cerebras
  • Qwen
  • GoogleAIStudio
  • Zhipu
  • Custom Providers(OpenAI compatible)
MCP (Model Context Protocol) Support

ChatFrame supports SSE, Streamable HTTP, and Stdio MCP servers, similar to Cursor.
Add any MCP server to expose its tools at runtime.

Runtime Environment(STDIO)

Stdio MCP servers require a local runtime environment. For example, to use the Postgres MCP server,

{
  "postgres": {
    "command": "npx",
    "args": [
      "-y",
      "@modelcontextprotocol/server-postgres",
      "postgresql://localhost/mydb"
    ]
  }
}

Node.js must be installed.

Next Step

DXT (one-click MCP installation, similar to browser extensions) will be introduced in the next major release.

Why aren’t Node.js and Python bundled?
I'd prefer to let users control their own runtime environments. Bundled interpreters can introduce version conflicts and increase the application footprint.

Projects

Create workspaces, upload local files (PDF, TXT, MD, code), and instantly build vector indexes for retrieval-augmented generation.

Chat
  • Invoke any MCP tool from within a conversation
  • Multimodal input (images and text files)
  • Live artifacts – render React components, HTML, SVG, or code snippets in an isolated sandbox that updates in real time
Pricing

ChatFrame is currently free. Paid plans will be announced in the future.

Technology

ChatFrame is closed-source and built on Tauri and the Vercel AI SDK.

Feature Map
  • Chat

    • Text chat
    • Model selection
    • Tool selection via MCP servers
    • Artifacts: create interactive content generated by the LLM
    • Attachments: upload images, PDFs, and text files (PDFs are parsed locally)
  • Projects

  • MCP Servers

  • Model Providers

  • Settings

    • App
      • Appearance: System / Light / Dark
      • Updates: ChatFrame downloads updates in the background and displays an install button when ready
    • Shortcuts
      • New Chat: ⌘N
      • Toggle Sidebar: ⌘B
    • Advanced
      • Proxy URL: sets the all_proxy environment variable. Leave blank to disable proxying. When configured, all LLM API requests are routed through the specified proxy.