GitHubスター
0
ユーザー評価
未評価
お気に入り
0
閲覧数
36
フォーク
0
イシュー
0
README
🧠 Name Analyzer with AI
This project is a Proof of Concept (POC) for implementing the Model Context Protocol (MCP) to track the full lifecycle of an API request, enrich it with structured data, and use AI (GPT-4o / GPT-3.5) to generate an automatic technical summary.
🚀 Features
- 🧾 Request lifecycle trace using the
MCPContextabstraction - 🌐 External API integrations:
agify.io→ estimate agegenderize.io→ estimate gender
- 🧠 AI-powered analysis using OpenAI's GPT models
- 📄 OpenAPI 3.0 documentation served via Swagger UI
- 📦 Clean architecture using Spring Boot 3 + Java 17
📐 Architecture
Client
|
v
/analyze [POST] <----> AnalyzeController
|
v
AnalyzerService
|
+------------+------------+
| |
AgifyClient GenderizeClient
| |
+------------+------------+
|
MCPContext ← records full trace
|
v
IAService → OpenAI call
|
v
AnalyzeResponse (enriched)
🔧 Tech Stack
- Java 17 ☕️
- Spring Boot 3 ⚙️
- Spring WebFlux (WebClient) 🌐
- Lombok 🧬
- OpenAI API (Chat Completions – GPT-4o / GPT-3.5) 🤖
📥 How to Run
# Clone the repository
git clone https://github.com/your-username/anthropic-mcp-ai.git
cd anthropic-mcp-ai
# Make sure you have Java 17 installed
./mvnw spring-boot:run
🔐 Environment Configuration
Set these variables in your environment or in a .env file:
OPENAI_API_KEY=sk-XXXXXXXXXXXXXXXXXXXXXXXXXXX
These values will be loaded via the AIProperties class using @ConfigurationProperties.
🧪 Try It
Once the server is running, access:
- Swagger UI: http://localhost:8080/swagger-ui.html
- Try a POST to
/analyzewith:
{
"name": "gabriel"
}
You will receive a structured response with the AI-generated explanation in the technicalExplanation field.