mcp-memory-service
mcp-memory-serviceは、メモリ管理を自動化するためのPythonライブラリです。ユーザーは簡単にメモリの使用状況を監視し、最適化することができます。特に、データ処理やAIモデルのトレーニングにおいて、効率的なメモリ使用が求められる場面で役立ちます。ドキュメントも充実しており、導入が容易です。
GitHubスター
671
ユーザー評価
未評価
お気に入り
0
閲覧数
48
フォーク
93
イシュー
3
MCP Memory Service
Universal MCP memory service providing semantic memory search and persistent storage for AI assistants. Works with Claude Desktop, VS Code, Cursor, Continue, and 13+ AI applications with SQLite-vec for fast local search and Cloudflare for global distribution.
🚀 Quick Start (2 minutes)
Universal Installer (Recommended)
# Clone and install with automatic platform detection
git clone https://github.com/doobidoo/mcp-memory-service.git
cd mcp-memory-service
python install.py
Docker (Fastest)
# For MCP protocol (Claude Desktop)
docker-compose up -d
# For HTTP API (Web Dashboard)
docker-compose -f docker-compose.http.yml up -d
Smithery (Claude Desktop)
# Auto-install for Claude Desktop
npx -y @smithery/cli install @doobidoo/mcp-memory-service --client claude
⚠️ First-Time Setup Expectations
On your first run, you'll see some warnings that are completely normal:
- "WARNING: Failed to load from cache: No snapshots directory" - The service is checking for cached models (first-time setup)
- "WARNING: Using TRANSFORMERS_CACHE is deprecated" - Informational warning, doesn't affect functionality
- Model download in progress - The service automatically downloads a ~25MB embedding model (takes 1-2 minutes)
These warnings disappear after the first successful run. The service is working correctly! For details, see our First-Time Setup Guide.
📚 Complete Documentation
👉 Visit our comprehensive Wiki for detailed guides:
🚀 Setup & Installation
- 📋 Installation Guide - Complete installation for all platforms and use cases
- 🖥️ Platform Setup Guide - Windows, macOS, and Linux optimizations
- 🔗 Integration Guide - Claude Desktop, Claude Code, VS Code, and more
🧠 Advanced Topics
- 🧠 Advanced Configuration - Integration patterns, best practices, workflows
- ⚡ Performance Optimization - Speed up queries, optimize resources, scaling
- 👨💻 Development Reference - Claude Code hooks, API reference, debugging
🔧 Help & Reference
- 🔧 Troubleshooting Guide - Solutions for common issues
- ❓ FAQ - Frequently asked questions
- 📝 Examples - Practical code examples and workflows
✨ Key Features
🧠 Intelligent Memory Management
- Semantic search with vector embeddings
- Natural language time queries ("yesterday", "last week")
- Tag-based organization with smart categorization
- Memory consolidation with dream-inspired algorithms
🔗 Universal Compatibility
- Claude Desktop - Native MCP integration
- Claude Code - Memory-aware development with hooks
- VS Code, Cursor, Continue - IDE extensions
- 13+ AI applications - REST API compatibility
💾 Flexible Storage
- SQLite-vec - Fast local storage (recommended)
- ChromaDB - Multi-client collaboration
- Cloudflare - Global edge distribution
- Automatic backups and synchronization
🚀 Production Ready
- Cross-platform - Windows, macOS, Linux
- Service installation - Auto-start background operation
- HTTPS/SSL - Secure connections
- Docker support - Easy deployment
💡 Basic Usage
# Store a memory
uv run memory store "Fixed race condition in authentication by adding mutex locks"
# Search for relevant memories
uv run memory recall "authentication race condition"
# Search by tags
uv run memory search --tags python debugging
# Check system health
uv run memory health
🔧 Configuration
Claude Desktop Integration
Add to your Claude Desktop config (~/.claude/config.json
):
{
"mcpServers": {
"memory": {
"command": "uv",
"args": ["--directory", "/path/to/mcp-memory-service", "run", "memory", "server"],
"env": {
"MCP_MEMORY_STORAGE_BACKEND": "sqlite_vec"
}
}
}
}
Environment Variables
# Storage backend (sqlite_vec recommended)
export MCP_MEMORY_STORAGE_BACKEND=sqlite_vec
# Enable HTTP API
export MCP_HTTP_ENABLED=true
export MCP_HTTP_PORT=8000
# Security
export MCP_API_KEY="your-secure-key"
🏗️ Architecture
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ AI Clients │ │ MCP Protocol │ │ Storage Backend │
│ │ │ │ │ │
│ • Claude Desktop│◄──►│ • Memory Store │◄──►│ • SQLite-vec │
│ • Claude Code │ │ • Semantic │ │ • ChromaDB │
│ • VS Code │ │ Search │ │ • Cloudflare │
│ • Cursor │ │ • Tag System │ │ │
└─────────────────┘ └─────────────────┘ └─────────────────┘
🛠️ Development
Project Structure
mcp-memory-service/
├── src/mcp_memory_service/ # Core application
│ ├── models/ # Data models
│ ├── storage/ # Storage backends
│ ├── web/ # HTTP API & dashboard
│ └── server.py # MCP server
├── scripts/ # Utilities & installation
├── tests/ # Test suite
└── tools/docker/ # Docker configuration
Contributing
- Fork the repository
- Create a feature branch
- Make your changes with tests
- Submit a pull request
See CONTRIBUTING.md for detailed guidelines.
🆘 Support
- 📖 Documentation: Wiki - Comprehensive guides
- 🐛 Bug Reports: GitHub Issues
- 💬 Discussions: GitHub Discussions
- 🔧 Troubleshooting: Troubleshooting Guide
📊 In Production
Real-world metrics from active deployments:
- 750+ memories stored and actively used
- <500ms response time for semantic search
- 65% token reduction in Claude Code sessions
- 96.7% faster context setup (15min → 30sec)
- 100% knowledge retention across sessions
🏆 Recognition
Verified MCP Server
Featured AI Tool
- Production-tested across 13+ AI applications
- Community-driven with real-world feedback and improvements
📄 License
Apache License 2.0 - see LICENSE for details.
Ready to supercharge your AI workflow? 🚀
👉 Start with our Installation Guide or explore the Wiki for comprehensive documentation.
Transform your AI conversations into persistent, searchable knowledge that grows with you.