Simple-MCP-Build

このリポジトリは、ClimateGPTチーム1が開発しているモデルコンテキストプロトコル(MCP)フレームワークを含んでいます。MCPは、データセットの読み込み、クエリの動的ルーティング、実行コンテキストの管理など、気候シナリオの予測に関連する機能を提供します。構造は明確で、テスト用のモデルも含まれており、ユニットテストも実施されています。

GitHubスター

1

ユーザー評価

未評価

フォーク

1

イシュー

0

閲覧数

1

お気に入り

0

README
Model Context Protocal (MCP) Implementation

This repository includes the Model Context Protocol (MCP) framework that ClimateGPT Team 1 is developing.

📂 Project Structure

/mcp-framework ├── modules/ # Core MCP components │ ├── context_manager.py # Stores execution context memory │ ├── data_loader.py # Handles dataset loading │ ├── query_manager.py # Routes queries dynamically │ ├── pipeline_manager.py # Executes MCP steps ├── models/ # Test EDA / initial models for MCP framework checking │ ├── scenario_projection.py # Temp trend analysis │ ├── temperature_trends.py # Climate scenario projections │ ├── Model3.py # Model 3 ├── config/ # Configuration settings │ ├── config.yaml # Defines dataset paths and pipeline steps ├── logs/ # Execution logs │ ├── mcp_execution.log ├── tests/ # Unit tests for MCP validation ├── main.py # Entry point for MCP execution ├── requirements.txt # Python dependencies ├── README.md # Project documentation

How to run MCP Framework
  1. Clone the repository (if not already cloned):

    git clone https://github.com/ newsconsole/GMU_DAEN_2025_01_A.git
    
  2. Switch to the ClimateGPT Team 1 Branch:

    git checkout ClimateGPT_Team1
    
  3. Make sure to set up venv (Virtual Env)

    1. python -m venv venv
    2. venv\Scripts\Activate
    
  4. Install dependencies (requirements.txt):

    pip install -r requirements.txt
    
  5. Run the MCP Pipeline

    python main.py 
    
Configuration & Execution
  • The MCP pipeline is dynamically controlled by config/config.yaml which defines the datasets and pipeline steps
  • Logs are stored in logs/mcp_execution.log for debugging and tracking execution results
Recent Updates
  • Implemented initial MCP Framework with modular design
  • Added dynamiic query routing & context memory