Multi-Capable-Processing-MCP-Smart-Agent

Multi-Capable Processing (MCP) Smart Agentは、特化したエージェントを中央REST APIを通じて接続するモジュラーで拡張可能なAI駆動のエージェントサーバーシステムです。コードリポジトリの分析、外部データの取得、テキスト要約の生成、過去のインタラクションを記憶する機能を備えています。

GitHubスター

0

ユーザー評価

未評価

フォーク

1

イシュー

0

閲覧数

1

お気に入り

0

README

Multi-Capable Processing (MCP) Smart Agent It is a modular and extensible AI-driven agentic server system that connects specialized agents through a central REST API. These agents can analyze code repositories, fetch external data (like weather), generate text summaries, and remember past interactions using a persistent memory manager.


🚀 Key Features
  • Multi-Agent Architecture: Modular design with specialized agents for code analysis, data lookup, and summarization.
  • Tool-Integrated Agents: Each agent uses tools like GitHub API, weather services, or basic NLP techniques.
  • Memory System: Keeps a persistent memory of prior tasks for contextual recall.
  • RESTful Server: Easily integrate with frontends, CLI tools, or workflows via HTTP.
  • Pythonic Structure: Fully testable and extensible project layout.
  • Ready for Scaling: You can plug in OpenAI, LangGraph, Vector Databases, and more.

🗂️ Project Structure
mcp-smart-agent/
│
├── agents/                  # AI agents for specific task domains
│   ├── code_agent.py        # Analyzes GitHub repositories
│   ├── data_agent.py        # Fetches weather data
│   └── summary_agent.py     # Summarizes input text
│
├── tools/                   # External service integrations
│   ├── github_tool.py       # Simulates GitHub API access
│   └── weather_tool.py      # Simulates weather data fetch
│
├── memory/
│   └── memory_manager.py    # In-memory key-value storage (can be extended)
│
├── server/
│   └── mcp_server.py        # Flask API endpoints to interact with all agents
│
├── tests/
│   └── test_agents.py       # Unit tests for core functionality
│
├── main.py                  # Entry point to start the server
├── requirements.txt         # Python dependencies
└── README.md                

🧠 How It Works

The system spins up a Flask server that exposes endpoints corresponding to different agents:

1. CodeAgent (analyze GitHub repo)
  • Extracts data from a GitHub-like repository (mocked).
  • Returns high-level analysis (e.g., number of files).
  • Saves the result in memory.
2. DataAgent (get weather data)
  • Accepts a location input.
  • Returns mock weather data (can be connected to OpenWeatherMap, etc.).
3. SummaryAgent (text summarizer)
  • Accepts long text and returns a basic summary.
  • You can extend this to use GPT or HuggingFace models.
4. MemoryManager
  • Saves outputs for reuse.
  • Supports simple key-value memory (can be upgraded to Redis or vector DB).

🔌 API Endpoints
Method Endpoint Description
POST /analyze_repo Analyze a GitHub repo
POST /get_weather Get mock weather data
POST /summarize Summarize a block of text
POST /retrieve_memory Retrieve stored memory for a task
🔧 Example Usage
curl -X POST http://localhost:5000/analyze_repo \
  -H "Content-Type: application/json" \
  -d '{"repo_url": "https://github.com/example/repo"}'

🧪 Testing

Run unit tests with:

python -m unittest discover tests

🛠 Installation & Run
Prerequisites
  • Python 3.7+
  • pip installed
Install dependencies
pip install -r requirements.txt
Start the server
python server/mcp_server.py

Ideas for Expansion
  • Replace mock tools with real APIs (GitHub, OpenWeather, LangChain tools).
  • Use vector databases like Pinecone or ChromaDB for persistent memory.
  • Add LangGraph for long-running planning workflows.
  • Replace summary agent with GPT-4 or HuggingFace Transformers.
  • Add authentication, logging, and rate-limiting.
🙋‍♂ Author

Made by Adad — an open-source AI agent framework for rapid prototyping and experimentation.

作者情報
Shabab

Machine Learning Engineer | Ex Data Analyst @ BRG | AI Educator & Instructor Google Certified | Gen AI Full Stack App Developer

https://cloudhubs.nl/Dhaka, Bangladesh

3

フォロワー

40

リポジトリ

0

Gist

11

貢献数

トップ貢献者

スレッド