mcp-agent-sandbox
mcp-agent-sandboxは、機械学習や自動化のワークフローを簡素化するためのPythonベースのツールです。このツールは、エージェントの開発やテストを行うためのサンドボックス環境を提供し、ユーザーがさまざまなシナリオを模擬することを可能にします。直感的なインターフェースと豊富な機能により、開発者は迅速にプロトタイプを作成し、実験を行うことができます。
GitHubスター
3
ユーザー評価
未評価
お気に入り
0
閲覧数
26
フォーク
0
イシュー
0
MCP Agent Python Starter (Built on MCP SDK)
A practical starter project using the [Model Context Protocol (MCP)] to demonstrate how to build local tool-using AI agents with Claude, LangChain, and Groq.
📚 Reference
This project is built on top of the official MCP Python SDK and follows the Model Context Protocol specification.
Model Context Protocol (MCP) – Python Implementation
🧠 What is MCP?
Model Context Protocol (MCP) is a standard developed by Anthropic to allow large language models (LLMs) to interact with external tools and environments. It introduces a communication method where the LLM acts as a "client" and interacts with tools via a "server" using a standardized transport layer like STDIO
or SSE
.
🛠️ Prerequisites
Make sure you have the following installed:
- Python 3.11 or higher
uv
(package manager): Installation Guide- Claude Desktop (for testing with MCP tools)
- Cursor (recommended editor for debugging)
- Basic understanding of:
- JSON-based communication
- LangChain
- Python or TypeScript
- MCP documentation: modelcontextprotocol.io
📦 Dependencies
- mcp[cli] (via uv)
- langchain
- langchain_openai
- langchain_groq
- python-dotenv
📦 Installation
# Clone the repo
git clone https://github.com/yourusername/model-context-protocol.git
cd model-context-protocol
# Initialize environment using uv
uv init
# Create folders
mkdir server docs testcode
# Create and activate virtual environment
uv venv
source .venv/bin/activate # Windows: .venv\Scripts\activate
📄 Documentation Setup
- Download the MCP Python SDK README
- Save it in your docs/ folder.
- Load it into Claude Desktop and prompt it to generate a server and client using that reference.
✍️ Tip: Be specific in your prompts.
▶️ Running the Client
In a new terminal window:
source .venv/bin/activate # Reactivate env
uv add mcp-use langchain langchain_groq python-dotenv
Create a .env file:
env
GROQ_API_KEY=your_groq_api_key # Get from groq.com
Run the client:
uv run path/to/your_client_file.py
🧪 Testing with Claude
You can also install your tool config to Claude:
uv install mcp path/to/your_server_file.py
This creates a config file that lets Claude Desktop access your tool natively for use in prompts.
⚠️ Note: This project uses the open-source MCP SDK (MIT Licensed). This repository itself is for demonstration purposes and retains custom licensing. See LICENSE for terms.