GitHubスター
0
ユーザー評価
未評価
お気に入り
0
閲覧数
11
フォーク
0
イシュー
0
Cost-Efficient MCP Server Deployment on AWS for AI Agents
A comprehensive guide to deploying Model Context Protocol (MCP) servers on AWS services cost-effectively and integrating them with AI agent frameworks like Google ADK.
Table of Contents
- What is MCP? (Start Here)
- Prerequisites
- Quick Start Guide
- MCP Architecture Fundamentals
- AWS Deployment Options
- Cost Comparison Analysis
- Recommended Deployment Strategies
- Step-by-Step Implementation
- Google ADK Integration
- Troubleshooting
- Monitoring and Optimization
- Best Practices
- Resources
What is MCP? (Start Here)
Model Context Protocol (MCP) is like a universal translator that allows AI applications (like Claude, ChatGPT, or Google's AI agents) to connect to external tools and data sources in a standardized way.
Think of it this way:
- Without MCP: Each AI tool needs custom code to connect to databases, APIs, or services
- With MCP: AI tools use a standard "language" to talk to any MCP server, regardless of what it connects to
Real-World Example:
Instead of building custom integrations for every tool, you create one MCP server that can:
- Query your company's database
- Call external APIs
- Analyze files
- Perform calculations
Then any MCP-compatible AI agent can use all these capabilities instantly.
Key Benefits of MCP
- Plug-and-Play: Connect any AI agent to any tool through a standard interface
- Real-Time Communication: Live data exchange with Server-Sent Events (SSE)
- Secure and Auditable: Built-in access control and comprehensive logging
- Highly Extensible: Easy to add new capabilities without changing AI agent code
- Cost-Effective: Share one MCP server across multiple AI agents and applications
Prerequisites
Before you begin, ensure you have:
Required Knowledge
- Basic understanding of AWS services (Lambda, EC2, or containers)
- Python programming experience
- Basic command line usage
- Understanding of APIs and JSON
AWS Account Setup
- Active AWS account with billing enabled
- AWS CLI installed and configured
- Basic IAM permissions for Lambda/Fargate deployment
Development Environment
- Python 3.9+ installed
- Node.js 18+ (for CDK examples)
- Docker (for containerized deployments)
Estimated Time Investment
- Quick Start: 30 minutes
- Full Implementation: 2-4 hours
- Production Deployment: 1-2 days
Quick Start Guide
Step 1: Choose Your Deployment Method (5 minutes)
For Beginners: Start with AWS Lambda (pay-per-use, no servers to manage)
For Production: Consider AWS Fargate (always-on, more predictable costs)
Step 2: Quick Decision Tree
Do you expect < 1 million requests per month?
├─ YES → Use AWS Lambda ($10-50/month)
└─ NO → Do you need 24/7 availability?
├─ YES → Use AWS Fargate ($50-200/month)
└─ NO → Use AWS Lambda with provisioned concurrency
Step 3: Your First MCP Server (15 minutes)
We'll create a simple MCP server that can analyze text and get current weather data.
Step 4: Test and Deploy (10 minutes)
Test locally, then deploy to AWS with a single command.
MCP Architecture Fundamentals
flowchart LR
subgraph "Your Computer"
Host["Host with MCP Client\n(Claude, IDEs, Tools)"]
S1["MCP Server A"]
S2["MCP Server B"]
S3["MCP Server C"]
Host <-->|"MCP Protocol"| S1
Host <-->|"MCP Protocol"| S2
Host <-->|"MCP Protocol"| S3
S1 <--> D1[("Local\nData Source A")]
S2 <--> D2[("Local\nData Source B")]
end
subgraph "Internet"
S3 <-->|"Web APIs"| D3[("Remote\nService C")]
end
Core Components
- MCP Host: The LLM-powered application (Claude, Google ADK agents)
- MCP Client: Maintains 1:1 connection with MCP Server
- MCP Server: Supplies context, tools, and prompts to the client
AWS Deployment Options
1. AWS Lambda (Serverless) - RECOMMENDED FOR COST EFFICIENCY
Pros:
- Pay only for execution time (no idle costs)
- Automatic scaling
- No server management
- Ideal for variable/unpredictable workloads
- Cold start optimizations available
Cons:
- 15-minute execution limit
- Cold start latency (100ms-5 seconds)
- Limited to 10GB memory
- Complex for long-running processes
Best For:
- Event-driven MCP servers
- Sporadic usage patterns
- Cost-sensitive deployments
- Quick prototyping
2. AWS Fargate (Container-as-a-Service)
Pros:
- No execution time limits
- Better for long-running processes
- More control over runtime environment
- No cold starts once running
- Up to 120GB memory, 16 vCPU
Cons:
- Higher costs due to continuous resource allocation
- Longer startup times (35 seconds - 2 minutes)
- More complex setup
- Pay for allocated resources even if idle
Best For:
- Enterprise deployments requiring high availability
- Long-running MCP servers
- Complex security requirements
- Consistent workloads
3. Amazon ECS on EC2
Pros:
- Maximum control and customization
- Cost-effective for consistent high usage
- Can use Reserved Instances for savings
Cons:
- Requires server management
- Higher operational overhead
- Not truly serverless
Best For:
- High-volume, consistent workloads
- Custom infrastructure requirements
Cost Comparison Analysis
Lambda Pricing Model
Cost = (Number of Requests × $0.20 per 1M requests) +
(Duration × Memory × $0.0001667 per GB-second)
Example: 1M requests/month, 1GB memory, 2-second average duration
- Requests: 1M × $0.20/1M = $0.20
- Compute: 1M × 2s × 1GB × $0.0001667 = $333.40
- Total: ~$333.60/month
Fargate Pricing Model
Cost = (vCPU hours × $0.04048) + (GB memory hours × $0.004445)
Example: 1 vCPU, 2GB memory, running 24/7
- vCPU: 744 hours × $0.04048 = $30.12
- Memory: 744 hours × 2GB × $0.004445 = $6.61
- Total: ~$36.73/month
Cost Optimization Recommendations
Usage Pattern | Recommended Service | Estimated Monthly Cost | Best For |
---|---|---|---|
< 100K requests/month, testing | Lambda | $2-10 | Prototyping, learning |
100K-1M requests/month, sporadic | Lambda | $10-50 | Small apps, personal projects |
1-10M requests/month, variable | Lambda | $50-200 | Growing applications |
> 10M requests/month, consistent | Fargate | $100-500 | Stable production workloads |
Enterprise, 24/7 availability | Fargate + Load Balancer | $500-2000 | Mission-critical systems |
Quick Reference: When to Use What
🟢 USE LAMBDA WHEN:
✓ You're starting out or prototyping
✓ Traffic is unpredictable or sporadic
✓ You want minimal operational overhead
✓ Cost optimization is priority #1
✓ You can handle 100ms-5s cold starts
🟡 USE FARGATE WHEN:
✓ You need consistent sub-100ms response times
✓ Traffic is predictable and consistent
✓ You're running 24/7 workloads
✓ You need complex networking or security
✓ You have containerized applications
Step-by-Step Implementation
Phase 1: Create Your First MCP Server (Local Development)
1. Set up the project structure
mkdir my-mcp-server
cd my-mcp-server
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install mcp anthropic-mcp-server boto3
2. Create a simple MCP server (mcp_server.py
)
#!/usr/bin/env python3
"""
Simple MCP Server for AWS - Beginner Example
This server provides basic text analysis and AWS cost checking tools
"""
import asyncio
import logging
from mcp.server import Server
from mcp.server.stdio import stdio_server
import mcp.types as types
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Create the MCP server
app = Server("my-first-mcp-server")
@app.list_tools()
async def list_tools() -> list[types.Tool]:
"""List available tools for the MCP client"""
return [
types.Tool(
name="text-analyzer",
description="Analyze text for word count, sentiment, and key phrases",
inputSchema={
"type": "object",
"properties": {
"text": {
"type": "string",
"description": "Text to analyze"
},
"analysis_type": {
"type": "string",
"enum": ["word_count", "sentiment", "summary"],
"description": "Type of analysis to perform"
}
},
"required": ["text", "analysis_type"]
}
),
types.Tool(
name="aws-simple-cost-check",
description="Get basic AWS cost information (demo version)",
inputSchema={
"type": "object",
"properties": {
"service": {
"type": "string",
"description": "AWS service to check (e.g., 'lambda', 'ec2')"
}
},
"required": ["service"]
}
)
]
@app.call_tool()
async def call_tool(name: str, arguments: dict) -> list[types.TextContent]:
"""Handle tool calls from the MCP client"""
if name == "text-analyzer":
text = arguments["text"]
analysis_type = arguments["analysis_type"]
if analysis_type == "word_count":
word_count = len(text.split())
char_count = len(text)
result = f"Word count: {word_count}\nCharacter count: {char_count}"
elif analysis_type == "sentiment":
# Simple sentiment analysis (in production, use a proper NLP library)
positive_words = ["good", "great", "excellent", "amazing", "wonderful"]
negative_words = ["bad", "terrible", "awful", "horrible", "disappointing"]
text_lower = text.lower()
positive_count = sum(1 for word in positive_words if word in text_lower)
negative_count = sum(1 for word in negative_words if word in text_lower)
if positive_count > negative_count:
sentiment = "Positive"
elif negative_count > positive_count:
sentiment = "Negative"
else:
sentiment = "Neutral"
result = f"Sentiment: {sentiment}\nPositive indicators: {positive_count}\nNegative indicators: {negative_count}"
elif analysis_type == "summary":
sentences = text.split('. ')
result = f"Text summary:\n- Total sentences: {len(sentences)}\n- First sentence: {sentences[0] if sentences else 'No sentences found'}"
return [types.TextContent(type="text", text=result)]
elif name == "aws-simple-cost-check":
service = arguments["service"]
# Mock cost data (in production, use boto3 and AWS Cost Explorer)
mock_costs = {
"lambda": "$12.50 this month (estimated)",
"ec2": "$45.30 this month (estimated)",
"s3": "$8.75 this month (estimated)"
}
cost_info = mock_costs.get(service.lower(), "Cost data not available for this service")
result = f"AWS {service.upper()} costs: {cost_info}"
return [types.TextContent(type="text", text=result)]
raise ValueError(f"Unknown tool: {name}")
async def main():
"""Run the MCP server"""
logger.info("Starting MCP server...")
async with stdio_server() as streams:
await app.run(
streams[0], streams[1], app.create_initialization_options()
)
if __name__ == "__main__":
asyncio.run(main())
3. Test your MCP server locally
# Test the server
python mcp_server.py
# In another terminal, you can test with:
echo '{"jsonrpc": "2.0", "id": 1, "method": "tools/list"}' | python mcp_server.py
Phase 2: Deploy to AWS Lambda (Production Ready)
1. Create deployment package
# Create requirements.txt
cat > requirements.txt << EOF
mcp>=1.0.0
boto3>=1.26.0
anthropic-mcp-server>=0.1.0
EOF
# Create lambda deployment package
mkdir lambda_package
pip install -r requirements.txt -t lambda_package/
cp mcp_server.py lambda_package/
2. Create Lambda-compatible handler (lambda_package/lambda_handler.py
)
import json
import asyncio
import logging
from mcp_server import app
logger = logging.getLogger()
logger.setLevel(logging.INFO)
def lambda_handler(event, context):
"""AWS Lambda handler for MCP server"""
try:
# Extract MCP request from Lambda event
if 'body' in event:
# API Gateway event
mcp_request = json.loads(event['body'])
else:
# Direct Lambda invocation
mcp_request = event
# Process MCP request
response = asyncio.run(process_mcp_request(mcp_request))
return {
'statusCode': 200,
'headers': {
'Content-Type': 'application/json',
'Access-Control-Allow-Origin': '*'
},
'body': json.dumps(response)
}
except Exception as e:
logger.error(f"Error processing MCP request: {str(e)}")
return {
'statusCode': 500,
'body': json.dumps({'error': str(e)})
}
async def process_mcp_request(request):
"""Process MCP request and return response"""
method = request.get('method')
params = request.get('params', {})
request_id = request.get('id')
try:
if method == 'tools/list':
tools = await app.list_tools()
result = [tool.model_dump() for tool in tools]
elif method == 'tools/call':
tool_name = params.get('name')
arguments = params.get('arguments', {})
result = await app.call_tool(tool_name, arguments)
result = [content.model_dump() for content in result]
else:
raise ValueError(f"Unknown method: {method}")
return {
'jsonrpc': '2.0',
'id': request_id,
'result': result
}
except Exception as e:
return {
'jsonrpc': '2.0',
'id': request_id,
'error': {
'code': -32603,
'message': str(e)
}
}
3. Deploy with AWS CLI
# Create deployment zip
cd lambda_package
zip -r ../mcp-server-lambda.zip .
cd ..
# Create Lambda function
aws lambda create-function \
--function-name my-mcp-server \
--runtime python3.11 \
--role arn:aws:iam::YOUR-ACCOUNT:role/lambda-execution-role \
--handler lambda_handler.lambda_handler \
--zip-file fileb://mcp-server-lambda.zip \
--timeout 300 \
--memory-size 512
Phase 3: Connect to AI Agents
1. Test with Claude Desktop
Add to your Claude Desktop config:
{
"mcpServers": {
"my-mcp-server": {
"command": "python",
"args": ["/path/to/your/mcp_server.py"]
}
}
}
2. Connect via HTTP API
import requests
def call_mcp_server(tool_name, arguments):
"""Call MCP server via HTTP API"""
payload = {
"jsonrpc": "2.0",
"id": 1,
"method": "tools/call",
"params": {
"name": tool_name,
"arguments": arguments
}
}
response = requests.post(
"YOUR-LAMBDA-API-URL",
json=payload,
headers={"Content-Type": "application/json"}
)
return response.json()
# Example usage
result = call_mcp_server("text-analyzer", {
"text": "This is a great example of MCP!",
"analysis_type": "sentiment"
})
print(result)
Recommended Deployment Strategies
Strategy 1: Pure Lambda Serverless (Most Cost-Efficient)
# Basic MCP Server on Lambda
import json
import asyncio
from mcp.server import Server
from mcp.server.stdio import stdio_server
import mcp.types as types
app = Server("aws-lambda-mcp-server")
@app.list_tools()
async def list_tools() -> list[types.Tool]:
return [
types.Tool(
name="aws-cost-analyzer",
description="Analyze AWS costs and usage",
inputSchema={
"type": "object",
"properties": {
"service": {"type": "string"},
"region": {"type": "string"}
}
}
)
]
@app.call_tool()
async def call_tool(name: str, arguments: dict) -> list[types.TextContent]:
if name == "aws-cost-analyzer":
# Implement cost analysis logic
result = analyze_aws_costs(arguments)
return [types.TextContent(type="text", text=result)]
raise ValueError(f"Unknown tool: {name}")
def lambda_handler(event, context):
# Lambda handler implementation
return asyncio.run(handle_mcp_request(event))
Strategy 2: Fargate for Enterprise (High Availability)
# docker-compose.yml for Fargate deployment
version: '3.8'
services:
mcp-server:
build: .
ports:
- "8080:8080"
environment:
- AWS_REGION=us-east-1
- LOG_LEVEL=INFO
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8080/health"]
interval: 30s
timeout: 10s
retries: 3
Strategy 3: Hybrid Approach
- Lambda: For lightweight, event-driven MCP tools
- Fargate: For resource-intensive, long-running MCP servers
- API Gateway: For HTTP-based MCP server endpoints
Troubleshooting
Common Issues and Solutions
1. "Module 'mcp' not found"
Problem: Python can't find the MCP library
Solution:
# Make sure you're in the virtual environment
source venv/bin/activate
# Install the correct package
pip install mcp>=1.0.0
# Alternative: Try the anthropic package
pip install anthropic-mcp-server
2. Lambda deployment fails with "Role does not exist"
Problem: Missing IAM role for Lambda execution
Solution:
# Create basic Lambda execution role
aws iam create-role \
--role-name lambda-execution-role \
--assume-role-policy-document '{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {"Service": "lambda.amazonaws.com"},
"Action": "sts:AssumeRole"
}
]
}'
# Attach basic execution policy
aws iam attach-role-policy \
--role-name lambda-execution-role \
--policy-arn arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
3. MCP server responds with "Unknown method"
Problem: Client is sending unsupported MCP method
Solution: Check that you're implementing the required MCP methods:
# Required methods for basic MCP server
@app.list_tools() # For tools/list
@app.call_tool() # For tools/call
@app.list_resources() # Optional: for resources/list
@app.list_prompts() # Optional: for prompts/list
4. AWS API permissions errors
Problem: Lambda can't access AWS services (S3, DynamoDB, etc.)
Solution: Add IAM permissions to your Lambda role:
# Example: Add S3 access
aws iam attach-role-policy \
--role-name lambda-execution-role \
--policy-arn arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess
5. Cold start timeouts
Problem: Lambda takes too long to start
Solutions:
- Reduce package size (remove unnecessary dependencies)
- Use provisioned concurrency for critical functions
- Consider moving to Fargate for consistent performance
6. MCP client can't connect to server
Problem: Connection issues between client and server
Debugging steps:
# Test MCP server locally
python mcp_server.py
# Test with curl (for HTTP endpoints)
curl -X POST your-api-endpoint \
-H "Content-Type: application/json" \
-d '{"jsonrpc":"2.0","id":1,"method":"tools/list"}'
# Check CloudWatch logs for Lambda
aws logs describe-log-groups --log-group-name-prefix /aws/lambda/my-mcp-server
Performance Optimization Tips
1. Reduce Cold Starts
# Initialize expensive resources outside the handler
import boto3
# Global initialization (runs once per container)
s3_client = boto3.client('s3')
dynamodb = boto3.resource('dynamodb')
def lambda_handler(event, context):
# Handler runs for each request
# Use pre-initialized clients
pass
2. Implement Caching
import json
from functools import lru_cache
@lru_cache(maxsize=100)
def expensive_operation(input_data):
"""Cache expensive operations"""
# Your expensive logic here
return result
3. Use Connection Pooling
import boto3
from botocore.config import Config
# Configure connection pooling
config = Config(
max_pool_connections=10,
retries={'max_attempts': 3}
)
client = boto3.client('dynamodb', config=config)
Debugging Checklist
- Virtual environment activated
- All dependencies installed
- AWS credentials configured
- IAM roles and policies set up
- MCP server responds to basic methods
- CloudWatch logs enabled
- API Gateway configured (if using HTTP)
- Client configuration matches server endpoint
Google ADK Integration
Architecture Overview
flowchart TD
A[Google ADK Agent] --> B[MCP Client]
B --> C[AWS Lambda MCP Server]
B --> D[AWS Fargate MCP Server]
C --> E[AWS Services]
D --> F[External APIs]
E --> G[DynamoDB]
E --> H[S3]
E --> I[CloudWatch]
ADK Agent Configuration
# Google ADK agent with MCP integration
from google.adk import Agent, Tool
from mcp_client import MCPClient
class AWSMCPTool(Tool):
def __init__(self):
self.mcp_client = MCPClient()
super().__init__(
name="aws-mcp-tool",
description="Access AWS services via MCP server"
)
async def execute(self, **kwargs):
# Connect to MCP server on AWS
await self.mcp_client.connect("https://your-mcp-server.amazonaws.com")
# Execute tool via MCP
result = await self.mcp_client.call_tool(
name="aws-cost-analyzer",
arguments=kwargs
)
return result
# ADK Agent setup
agent = Agent(
name="AWS Cost Assistant",
model="gemini-2.0-flash-exp",
tools=[AWSMCPTool()],
instructions="You are an AWS cost optimization assistant..."
)
Multi-Agent Collaboration
# Multi-agent setup with MCP
from google.adk.a2a import AgentCommunication
# Cost Analysis Agent
cost_agent = Agent(
name="Cost Analyzer",
tools=[AWSCostMCPTool()],
instructions="Analyze AWS costs and identify optimization opportunities"
)
# Resource Optimization Agent
optimize_agent = Agent(
name="Resource Optimizer",
tools=[AWSResourceMCPTool()],
instructions="Implement cost optimization recommendations"
)
# A2A Communication
comm = AgentCommunication([cost_agent, optimize_agent])
# Workflow
async def cost_optimization_workflow(query):
# Step 1: Analyze costs
analysis = await cost_agent.process(query)
# Step 2: Get optimization recommendations
recommendations = await optimize_agent.process(analysis)
return recommendations
Implementation Examples
1. AWS Lambda MCP Server with CDK
// CDK Infrastructure
import * as cdk from 'aws-cdk-lib';
import * as lambda from 'aws-cdk-lib/aws-lambda';
import * as apigateway from 'aws-cdk-lib/aws-apigateway';
export class MCPServerStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);
// Lambda function for MCP server
const mcpServer = new lambda.Function(this, 'MCPServer', {
runtime: lambda.Runtime.PYTHON_3_11,
handler: 'mcp_server.lambda_handler',
code: lambda.Code.fromAsset('src'),
timeout: cdk.Duration.minutes(15),
memorySize: 1024,
environment: {
LOG_LEVEL: 'INFO'
}
});
// API Gateway for HTTP access
const api = new apigateway.RestApi(this, 'MCPServerAPI', {
restApiName: 'MCP Server Service'
});
const integration = new apigateway.LambdaIntegration(mcpServer);
api.root.addMethod('POST', integration);
}
}
2. Fargate MCP Server with High Availability
# AWS ECS Task Definition
version: '1'
taskDefinition:
family: mcp-server
networkMode: awsvpc
requiresCompatibilities:
- FARGATE
cpu: '256'
memory: '512'
containerDefinitions:
- name: mcp-server
image: your-account.dkr.ecr.region.amazonaws.com/mcp-server:latest
portMappings:
- containerPort: 8080
protocol: tcp
environment:
- name: AWS_REGION
value: us-east-1
logConfiguration:
logDriver: awslogs
options:
awslogs-group: /ecs/mcp-server
awslogs-region: us-east-1
awslogs-stream-prefix: ecs
3. Cost Optimization MCP Server
# AWS Cost Analysis MCP Server
import boto3
from datetime import datetime, timedelta
from mcp.server import Server
import mcp.types as types
app = Server("aws-cost-mcp-server")
@app.list_tools()
async def list_tools():
return [
types.Tool(
name="get-cost-breakdown",
description="Get AWS cost breakdown by service",
inputSchema={
"type": "object",
"properties": {
"days": {"type": "integer", "default": 30},
"granularity": {"type": "string", "enum": ["DAILY", "MONTHLY"]}
}
}
),
types.Tool(
name="identify-unused-resources",
description="Identify unused AWS resources",
inputSchema={
"type": "object",
"properties": {
"services": {"type": "array", "items": {"type": "string"}}
}
}
)
]
@app.call_tool()
async def call_tool(name: str, arguments: dict):
ce_client = boto3.client('ce') # Cost Explorer
if name == "get-cost-breakdown":
end_date = datetime.now()
start_date = end_date - timedelta(days=arguments.get('days', 30))
response = ce_client.get_cost_and_usage(
TimePeriod={
'Start': start_date.strftime('%Y-%m-%d'),
'End': end_date.strftime('%Y-%m-%d')
},
Granularity=arguments.get('granularity', 'MONTHLY'),
Metrics=['BlendedCost'],
GroupBy=[{'Type': 'DIMENSION', 'Key': 'SERVICE'}]
)
# Process and format results
cost_breakdown = format_cost_data(response)
return [types.TextContent(
type="text",
text=f"AWS Cost Breakdown:\n{cost_breakdown}"
)]
elif name == "identify-unused-resources":
# Implement unused resource identification
unused_resources = find_unused_resources(arguments.get('services', []))
return [types.TextContent(
type="text",
text=f"Unused Resources Found:\n{unused_resources}"
)]
Monitoring and Optimization
CloudWatch Dashboards
{
"widgets": [
{
"type": "metric",
"properties": {
"metrics": [
["AWS/Lambda", "Duration", "FunctionName", "mcp-server"],
["AWS/Lambda", "Invocations", "FunctionName", "mcp-server"],
["AWS/Lambda", "Errors", "FunctionName", "mcp-server"]
],
"period": 300,
"stat": "Average",
"region": "us-east-1",
"title": "MCP Server Lambda Metrics"
}
}
]
}
Cost Alerts
# CloudWatch Cost Alarm
import boto3
cloudwatch = boto3.client('cloudwatch')
cloudwatch.put_metric_alarm(
AlarmName='MCP-Server-High-Cost',
ComparisonOperator='GreaterThanThreshold',
EvaluationPeriods=1,
MetricName='EstimatedCharges',
Namespace='AWS/Billing',
Period=86400,
Statistic='Maximum',
Threshold=100.0,
ActionsEnabled=True,
AlarmActions=[
'arn:aws:sns:us-east-1:123456789012:billing-alerts'
],
AlarmDescription='Alert when MCP server costs exceed $100'
)
Best Practices
1. Cost Optimization
- Use Lambda for sporadic workloads (< 1M requests/month)
- Use Fargate for consistent workloads (> 10M requests/month)
- Implement proper caching to reduce redundant API calls
- Use AWS Savings Plans for predictable workloads
- Monitor and set cost alerts
2. Performance Optimization
- Minimize Lambda cold starts with provisioned concurrency
- Use connection pooling for database connections
- Implement proper error handling and retries
- Use CloudWatch insights for performance monitoring
3. Security Best Practices
- Use IAM roles with least privilege principle
- Enable VPC endpoints for secure AWS service access
- Implement proper authentication for MCP endpoints
- Use AWS WAF for API protection
- Enable CloudTrail for audit logging
4. Scalability Considerations
- Design for horizontal scaling
- Use SQS for async processing
- Implement circuit breakers for external API calls
- Use Auto Scaling for Fargate deployments
Resources
Official Documentation
- Model Context Protocol Specification
- AWS Lambda Documentation
- AWS Fargate Documentation
- Google ADK Documentation
Sample Implementations
Cost Calculators
Community Resources
Migration Path: From Prototype to Production
Phase 1: Development (Week 1)
- Start with: Local MCP server development
- Focus on: Core functionality and tool implementation
- Cost: $0 (local development only)
Phase 2: Testing (Week 2)
- Deploy to: AWS Lambda (basic setup)
- Focus on: Integration testing and debugging
- Cost: $5-20/month (low usage)
Phase 3: Production (Month 2)
- Scale to: Lambda with API Gateway OR Fargate
- Focus on: Performance optimization and monitoring
- Cost: $50-500/month (depending on usage)
Phase 4: Enterprise (Month 3+)
- Upgrade to: Multi-region Fargate with load balancing
- Focus on: High availability and advanced features
- Cost: $500-2000+/month (full enterprise features)
Conclusion
For Beginners: Start Simple
- Follow the Step-by-Step Guide above to create your first MCP server locally
- Deploy to Lambda for immediate cost savings and simplicity
- Test with Claude Desktop or simple HTTP calls
- Iterate and improve based on your specific needs
For Production: Choose Based on Usage
If you have... | Choose... | Because... |
---|---|---|
< 1M requests/month | AWS Lambda | Most cost-effective, automatic scaling |
> 10M requests/month | AWS Fargate | Better performance, no cold starts |
Enterprise requirements | Fargate + Load Balancer | High availability, better SLOs |
Unpredictable traffic | Lambda with auto-scaling | Pay only for what you use |
Key Success Factors
- Start Small: Begin with the basic example and expand gradually
- Monitor Costs: Set up billing alerts from day one
- Test Locally First: Debug issues locally before deploying to AWS
- Use the Troubleshooting Guide: Most issues have known solutions
- Plan for Growth: Design with future scaling in mind
Next Steps
- Clone the example code and run it locally
- Deploy your first Lambda function following the guide
- Connect it to your favorite AI agent (Claude, Google ADK)
- Monitor usage and costs for the first month
- Scale based on actual usage patterns
The combination of MCP's standardization and AWS's cost-effective deployment options makes it easier than ever to build powerful AI agent integrations. Start with the basics, learn from real usage, and scale as needed.