mcp-prompt-optimizer

Advanced MCP server providing cutting-edge prompt optimization tools with research-backed strategies

GitHubスター

7

ユーザー評価

未評価

フォーク

2

イシュー

1

閲覧数

0

お気に入り

0

README
MCP Prompt Optimizer

Python 3.8+ License: MIT MCP Compatible

A professional-grade MCP (Model Context Protocol) server that provides cutting-edge prompt optimization tools with research-backed strategies delivering 15-74% performance improvements.

✨ Features
🎯 Basic Optimization Strategies
  • Clarity: Simplifies prompts for directness and precision
  • Specificity: Adds detailed constraints and requirements
  • Chain of Thought: Incorporates step-by-step reasoning
  • Few-Shot: Includes example formats for guidance
  • Structured Output: Defines clear output organization
  • Role-Based: Adds expert role context
🚀 Advanced Optimization Strategies
  • Tree of Thoughts (ToT): Multi-path reasoning with 74% success rate on complex tasks
  • Constitutional AI: Self-critique and alignment with safety principles
  • Automatic Prompt Engineer (APE): AI-discovered optimal instruction patterns
  • Meta-Prompting: AI generates its own optimized prompts
  • Self-Refine: Iterative improvement with 20% performance gains
  • TEXTGRAD: Natural language feedback as optimization gradients
  • Medprompt: Multi-technique ensemble achieving 90%+ accuracy
  • PromptWizard: Feedback-driven self-evolving prompts
📋 Professional Domain Templates

Production-ready templates across 11 domains:

  • Business Analysis: Competitive analysis frameworks
  • Product Management: User research synthesis
  • Content Creation: Technical blog posts with SEO optimization
  • Development: Comprehensive code review checklists
  • Communication: Stakeholder updates and project reports
  • Strategy: OKR planning frameworks
  • Operations: Standard Operating Procedures (SOPs)
  • Legal: Contract termination and compliance
  • Customer Experience: Feedback surveys and insights
  • Data Analysis: Data insights and reporting
  • Meeting Management: Effective meeting agendas
🛠️ Installation
Quick Setup
# Clone the repository
git clone <repository-url>
cd mcp-prompt-optimizer

# Create virtual environment (recommended)
python3 -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
./install.sh

# Or install manually
pip install -r requirements.txt

# Configure Claude Desktop
python3 setup_interactive.py
Manual Configuration

Add to your Claude Desktop configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

Windows: %APPDATA%\Claude\claude_desktop_config.json

Linux: ~/.config/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "prompt-optimizer": {
      "command": "python3",
      "args": ["/path/to/mcp-prompt-optimizer/prompt_optimizer.py"],
      "env": {}
    }
  }
}
🎮 Usage
Basic Commands
# Analyze prompt quality
"Analyze this prompt: write a blog post about AI"

# Apply specific optimization
"Optimize this prompt using chain_of_thought: explain machine learning"

# Auto-select best strategy
"Auto-optimize: help me debug this code"

# Get domain template
"Get domain template for code_review_checklist"
Advanced Commands
# Use Tree of Thoughts for complex problems
"Apply advanced optimization with tree_of_thoughts: design a microservices architecture"

# Use Constitutional AI for safety-critical tasks
"Apply advanced optimization with constitutional_ai: create content moderation guidelines"

# Use Medprompt for high-accuracy classification
"Apply advanced optimization with medprompt: categorize customer support tickets"

# List available templates
"List all domain templates"
🏗️ Architecture
mcp-prompt-optimizer/
├── prompt_optimizer.py      # Main MCP server
├── advanced_strategies.py   # Research-backed optimization strategies
├── domain_templates.py      # Professional domain templates
├── examples.py              # Usage examples and demonstrations
├── setup_interactive.py     # Automated setup script
└── README.md               # This file
🧪 Testing
# Run basic tests
./test.sh

# Run usage examples
python3 examples.py
📊 Performance Benchmarks
Strategy Use Case Performance Improvement
Tree of Thoughts Complex reasoning 70-74% success rate
Medprompt Classification tasks 90%+ accuracy
Self-Refine Iterative improvement 20% per iteration
Constitutional AI Safety alignment High compliance
Chain of Thought Step-by-step tasks 15-25% improvement
🔧 Available Tools
Core Tools
  1. analyze_prompt: Analyzes prompt quality and identifies issues
  2. optimize_prompt: Applies specific optimization strategies
  3. auto_optimize: Automatically selects optimal strategy
  4. get_prompt_template: Returns basic templates
Advanced Tools
  1. advanced_optimize: Applies research-backed strategies
  2. get_domain_template: Returns professional domain templates
  3. list_domain_templates: Lists available templates by domain
🎯 Strategy Selection Guide
Prompt Type Recommended Strategy
Complex problems tree_of_thoughts
Classification tasks medprompt
Safety-critical constitutional_ai
Vague requirements meta_prompting
Needs refinement self_refine
General optimization auto
🤝 Contributing

We welcome contributions! Please:

  1. Fork the repository
  2. Create a feature branch
  3. Add tests for new functionality
  4. Update documentation
  5. Submit a pull request
Adding New Features
  • New Strategy: Add to advanced_strategies.py
  • New Template: Add to domain_templates.py
  • Examples: Add to examples.py
🐛 Troubleshooting
Common Issues

MCP not working?

  • Check Python version: python3 --version (requires 3.8+)
  • Install dependencies: Run ./install.sh or pip install -r requirements.txt
  • Verify MCP installation: pip show mcp
  • Check Claude Desktop logs
  • Restart Claude Desktop

Commands not recognized?

  • Verify configuration file location
  • Check file paths in configuration
  • Run setup script again
Debug Mode
# Test server directly
python3 prompt_optimizer.py

# Verbose logging
export MCP_LOG_LEVEL=debug
python3 prompt_optimizer.py
📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments
  • Research from Princeton, Google DeepMind, Microsoft Research
  • Anthropic's Constitutional AI framework
  • Stanford's DSPy framework
  • OpenAI's prompt engineering guidelines
📈 Citation

If you use this tool in your research or projects, please cite:

@software{mcp_prompt_optimizer,
  title={MCP Prompt Optimizer: Research-Backed Prompt Optimization for AI Systems},
  author={Bubobot},
  year={2024},
  url={https://github.com/Bubobot-Team/mcp-prompt-optimizer}
}

Built with ❤️ for the AI community

For questions, issues, or contributions, please visit our GitHub repository.

作者情報
Bubobot Team

AI-powered monitoring platform

1

フォロワー

4

リポジトリ

0

Gist

7

貢献数

トップ貢献者

スレッド