MCP-RAG-DATABASE
このプロジェクトは、TypeScriptで構築されたデータベース関連のツールです。機能は限られているものの、データ管理やストレージに関する基本的な操作をサポートしています。ドキュメントが不十分で、ユーザーが理解するのに苦労する可能性があります。
GitHubスター
1
ユーザー評価
未評価
お気に入り
0
閲覧数
25
フォーク
0
イシュー
0
🚀 Enterprise Multi-MCP Smart Database System
Revolutionary database replacement technology that eliminates SQL and uses Multi-Context Processors (MCPs) with dual RAG intelligence for natural language data management.
🎯 What Makes This Revolutionary?
❌ Traditional Databases
- Rigid schemas and complex SQL
- Monolithic architecture
- Manual optimization required
- Limited intelligence
✅ Enterprise Multi-MCP System
- No SQL required - Natural language queries only
- Domain-specific intelligence - Each MCP understands its data
- Auto-optimization - Self-organizing and performance-tuning
- AI-powered - RAG systems for intelligent data management
🏗️ System Architecture
High-Level Architecture Diagram
graph TB
subgraph "📱 Client Layer"
CLIENT[Client Applications]
API[REST API Endpoints]
WS[WebSocket Real-time]
end
subgraph "🧠 Intelligence Layer"
RAG1[RAG₁<br/>Intelligent Ingestion]
RAG2[RAG₂<br/>Natural Language Queries]
ML[ML Classification Engine]
NLP[NLP Query Parser]
end
subgraph "🎛️ MCP Registry & Orchestration"
REGISTRY[MCP Registry<br/>Central Coordinator]
LB[Load Balancer]
HEALTH[Health Monitor]
MIGRATE[Migration Engine]
end
subgraph "🔥 HOT MCPs - Frequently Accessed"
USER_MCP[👤 UserMCP<br/>Profiles & Auth]
CHAT_MCP[💬 ChatMCP<br/>Messages & Threads]
STATS_MCP[📊 StatsMCP<br/>Real-time Analytics]
end
subgraph "❄️ COLD MCPs - Archived Data"
LOGS_MCP[📝 LogsMCP<br/>System Logs]
ARCHIVE_MCP[🗄️ ArchiveMCP<br/>Historical Data]
BACKUP_MCP[💾 BackupMCP<br/>Data Backups]
end
subgraph "⚡ Performance Layer"
CACHE[Intelligent Cache]
INDEX[Auto-Indexing]
PREDICT[Predictive Loading]
end
CLIENT --> API
CLIENT --> WS
API --> RAG1
API --> RAG2
RAG1 --> ML
RAG1 --> REGISTRY
RAG2 --> NLP
RAG2 --> REGISTRY
REGISTRY --> LB
REGISTRY --> HEALTH
REGISTRY --> MIGRATE
LB --> USER_MCP
LB --> CHAT_MCP
LB --> STATS_MCP
LB --> LOGS_MCP
LB --> ARCHIVE_MCP
LB --> BACKUP_MCP
HEALTH --> MIGRATE
MIGRATE -.-> USER_MCP
MIGRATE -.-> CHAT_MCP
MIGRATE -.-> STATS_MCP
USER_MCP --> CACHE
CHAT_MCP --> CACHE
STATS_MCP --> INDEX
LOGS_MCP --> PREDICT
classDef hotMcp fill:#ff6b6b,stroke:#d63031,stroke-width:2px,color:#fff
classDef coldMcp fill:#74b9ff,stroke:#0984e3,stroke-width:2px,color:#fff
classDef intelligence fill:#a29bfe,stroke:#6c5ce7,stroke-width:2px,color:#fff
classDef registry fill:#fd79a8,stroke:#e84393,stroke-width:2px,color:#fff
classDef performance fill:#55a3ff,stroke:#2d96ff,stroke-width:2px,color:#fff
class USER_MCP,CHAT_MCP,STATS_MCP hotMcp
class LOGS_MCP,ARCHIVE_MCP,BACKUP_MCP coldMcp
class RAG1,RAG2,ML,NLP intelligence
class REGISTRY,LB,HEALTH,MIGRATE registry
class CACHE,INDEX,PREDICT performance
Data Flow Architecture
sequenceDiagram
participant C as Client
participant API as API Server
participant RAG1 as RAG₁ Ingestion
participant RAG2 as RAG₂ Query
participant REG as MCP Registry
participant USER as UserMCP
participant CHAT as ChatMCP
participant CACHE as Cache Layer
Note over C,CACHE: Data Ingestion Flow
C->>API: POST /api/v1/ingest
API->>RAG1: Raw data classification
RAG1->>RAG1: ML analysis & routing decision
RAG1->>REG: Request optimal MCP
REG->>RAG1: Return UserMCP instance
RAG1->>USER: Store structured data
USER->>CACHE: Update cache
USER->>API: Confirm storage
API->>C: Success response
Note over C,CACHE: Natural Language Query Flow
C->>API: POST /api/v1/query {"naturalQuery": "get active users"}
API->>RAG2: Parse natural language
RAG2->>RAG2: Intent recognition & entity extraction
RAG2->>REG: Determine target MCPs
REG->>RAG2: Return [UserMCP, ChatMCP]
par Parallel MCP Queries
RAG2->>USER: Execute user query
RAG2->>CHAT: Execute activity query
end
USER->>RAG2: Return user data
CHAT->>RAG2: Return activity data
RAG2->>RAG2: Aggregate & optimize results
RAG2->>API: Combined results
API->>C: JSON response
🧠 Dual RAG Intelligence System
RAG₁: Intelligent Data Ingestion
flowchart TD
START([Raw Data Input]) --> ANALYZE{AI Classification}
ANALYZE -->|User Data| USER_ROUTE[Route to UserMCP]
ANALYZE -->|Chat Message| CHAT_ROUTE[Route to ChatMCP]
ANALYZE -->|Metrics| STATS_ROUTE[Route to StatsMCP]
ANALYZE -->|Log Entry| LOGS_ROUTE[Route to LogsMCP]
USER_ROUTE --> USER_PROCESS[Process & Index]
CHAT_ROUTE --> CHAT_PROCESS[Extract Mentions/Tags]
STATS_ROUTE --> STATS_PROCESS[Time-series Analysis]
LOGS_ROUTE --> LOGS_PROCESS[Log Level Classification]
USER_PROCESS --> STORE[(Optimized Storage)]
CHAT_PROCESS --> STORE
STATS_PROCESS --> STORE
LOGS_PROCESS --> STORE
STORE --> LEARN[Pattern Learning]
LEARN --> OPTIMIZE[Optimize Future Routing]
classDef process fill:#fdcb6e,stroke:#e17055
classDef decision fill:#a29bfe,stroke:#6c5ce7
classDef storage fill:#55a3ff,stroke:#2d96ff
classDef learn fill:#fd79a8,stroke:#e84393
class USER_PROCESS,CHAT_PROCESS,STATS_PROCESS,LOGS_PROCESS process
class ANALYZE decision
class STORE storage
class LEARN,OPTIMIZE learn
RAG₂: Natural Language Query Processing
flowchart TD
QUERY([Natural Language Query]) --> PARSE{NLP Parsing}
PARSE --> INTENT[Intent Recognition]
PARSE --> ENTITY[Entity Extraction]
PARSE --> CONTEXT[Context Analysis]
INTENT --> PLAN[Query Execution Plan]
ENTITY --> PLAN
CONTEXT --> PLAN
PLAN --> ROUTE{MCP Routing}
ROUTE -->|User Query| USER_MCP[👤 UserMCP]
ROUTE -->|Chat Query| CHAT_MCP[💬 ChatMCP]
ROUTE -->|Stats Query| STATS_MCP[📊 StatsMCP]
ROUTE -->|Logs Query| LOGS_MCP[📝 LogsMCP]
USER_MCP --> RESULTS[Result Collection]
CHAT_MCP --> RESULTS
STATS_MCP --> RESULTS
LOGS_MCP --> RESULTS
RESULTS --> AGGREGATE[Intelligent Aggregation]
AGGREGATE --> OPTIMIZE[Result Optimization]
OPTIMIZE --> CACHE[Cache Results]
CACHE --> RESPONSE([Structured Response])
classDef nlp fill:#a29bfe,stroke:#6c5ce7,color:#fff
classDef mcp fill:#ff6b6b,stroke:#d63031,color:#fff
classDef process fill:#55a3ff,stroke:#2d96ff,color:#fff
class PARSE,INTENT,ENTITY,CONTEXT nlp
class USER_MCP,CHAT_MCP,STATS_MCP,LOGS_MCP mcp
class PLAN,RESULTS,AGGREGATE,OPTIMIZE,CACHE process
🎛️ MCP Registry & Hot/Cold Classification
Dynamic MCP Management
stateDiagram-v2
[*] --> Initializing
Initializing --> Active: MCP Created
Active --> Hot: High Access Frequency
Active --> Cold: Low Access Frequency
Hot --> Optimized: Performance Tuning
Cold --> Archived: Data Compression
Optimized --> Hot: Continued Use
Archived --> Cold: Occasional Access
Hot --> Migrating: Access Pattern Change
Cold --> Migrating: Access Pattern Change
Migrating --> Hot: Migration to Hot Tier
Migrating --> Cold: Migration to Cold Tier
Active --> Failed: Health Check Fail
Hot --> Failed: Critical Error
Cold --> Failed: System Error
Failed --> Recovering: Auto-Recovery
Recovering --> Active: Recovery Success
Recovering --> [*]: Recovery Failed
note right of Hot
🔥 HOT MCPs
- In-memory caching
- Optimized indexes
- Real-time processing
end note
note right of Cold
❄️ COLD MCPs
- Compressed storage
- Batch processing
- Archive optimization
end note
MCP Classification Algorithm
flowchart TD
DATA[MCP Metrics] --> SCORE{Calculate Score}
SCORE --> ACCESS_FREQ[Access Frequency<br/>Weight: 40%]
SCORE --> RESPONSE_TIME[Response Time<br/>Weight: 25%]
SCORE --> DATA_SIZE[Data Growth<br/>Weight: 20%]
SCORE --> USER_PRIORITY[User Priority<br/>Weight: 15%]
ACCESS_FREQ --> CALCULATE[Weighted Score Calculation]
RESPONSE_TIME --> CALCULATE
DATA_SIZE --> CALCULATE
USER_PRIORITY --> CALCULATE
CALCULATE --> THRESHOLD{Score >= 70?}
THRESHOLD -->|Yes| HOT[🔥 HOT Tier]
THRESHOLD -->|No| COLD_CHECK{Score >= 30?}
COLD_CHECK -->|Yes| WARM[🌡️ WARM Tier]
COLD_CHECK -->|No| COLD[❄️ COLD Tier]
HOT --> HOT_FEATURES[• In-memory cache<br/>• SSD storage<br/>• Real-time indexing<br/>• Priority processing]
WARM --> WARM_FEATURES[• Hybrid cache<br/>• Standard storage<br/>• Periodic indexing<br/>• Normal processing]
COLD --> COLD_FEATURES[• Disk cache<br/>• Archive storage<br/>• Batch indexing<br/>• Background processing]
classDef hot fill:#ff6b6b,stroke:#d63031,stroke-width:2px,color:#fff
classDef warm fill:#fdcb6e,stroke:#e17055,stroke-width:2px,color:#fff
classDef cold fill:#74b9ff,stroke:#0984e3,stroke-width:2px,color:#fff
class HOT,HOT_FEATURES hot
class WARM,WARM_FEATURES warm
class COLD,COLD_FEATURES cold
🏢 Enterprise Features
Security Architecture
graph TB
subgraph "🛡️ Security Layers"
AUTH[Authentication Layer]
AUTHZ[Authorization Layer]
ENCRYPT[Encryption Layer]
AUDIT[Audit Layer]
end
subgraph "🔐 Authentication"
JWT[JWT Tokens]
OAUTH[OAuth 2.0]
MFA[Multi-Factor Auth]
SSO[Single Sign-On]
end
subgraph "🎫 Authorization"
RBAC[Role-Based Access]
ABAC[Attribute-Based Access]
POLICIES[Policy Engine]
PERMISSIONS[Permission Matrix]
end
subgraph "🔒 Encryption"
TLS[TLS/SSL Transit]
AES[AES-256 At Rest]
KEY_MGMT[Key Management]
FIELD[Field-Level Encryption]
end
subgraph "📋 Auditing"
ACCESS_LOG[Access Logging]
CHANGE_LOG[Change Tracking]
COMPLIANCE[Compliance Reports]
MONITORING[Security Monitoring]
end
AUTH --> JWT
AUTH --> OAUTH
AUTH --> MFA
AUTH --> SSO
AUTHZ --> RBAC
AUTHZ --> ABAC
AUTHZ --> POLICIES
AUTHZ --> PERMISSIONS
ENCRYPT --> TLS
ENCRYPT --> AES
ENCRYPT --> KEY_MGMT
ENCRYPT --> FIELD
AUDIT --> ACCESS_LOG
AUDIT --> CHANGE_LOG
AUDIT --> COMPLIANCE
AUDIT --> MONITORING
Performance & Monitoring
graph TB
subgraph "📊 Monitoring Dashboard"
METRICS[Real-time Metrics]
ALERTS[Alert System]
HEALTH[Health Checks]
PERF[Performance Analytics]
end
subgraph "⚡ Performance Optimization"
CACHE[Multi-Level Caching]
INDEX[Auto-Indexing]
PREDICT[Predictive Loading]
BALANCE[Load Balancing]
end
subgraph "🎯 Key Metrics"
QPS[Queries Per Second]
LATENCY[Response Latency]
THROUGHPUT[Data Throughput]
UPTIME[System Uptime]
end
subgraph "🚨 Alerting"
THRESHOLD[Threshold Alerts]
ANOMALY[Anomaly Detection]
ESCALATION[Alert Escalation]
NOTIFICATION[Multi-Channel Notifications]
end
METRICS --> QPS
METRICS --> LATENCY
METRICS --> THROUGHPUT
METRICS --> UPTIME
ALERTS --> THRESHOLD
ALERTS --> ANOMALY
ALERTS --> ESCALATION
ALERTS --> NOTIFICATION
PERF --> CACHE
PERF --> INDEX
PERF --> PREDICT
PERF --> BALANCE
🚀 Quick Start
Prerequisites
- Node.js 18+
- npm 8+
- TypeScript 5.3+
Installation & Setup
# Clone the repository
git clone https://github.com/notyesbut/MCP-RAG-DATABASE.git
cd MCP-RAG-DATABASE
# Install dependencies
npm install
# Build the project
npm run build
# Start the system
npm start
✅ System is now running at http://localhost:3000
Verify Installation
# Health check
curl http://localhost:3000/api/v1/health
# Expected response:
{
"status": "healthy",
"timestamp": 1640995200000,
"uptime": 125.5,
"mcps": {
"total": 4,
"active": 4,
"hot": 2,
"cold": 2
}
}
💡 Usage Examples
1. Natural Language Queries (No SQL!)
# Query active users
curl -X POST http://localhost:3000/api/v1/query \
-H "Content-Type: application/json" \
-d '{
"naturalQuery": "show me all active users from last week"
}'
# Search messages
curl -X POST http://localhost:3000/api/v1/query \
-H "Content-Type: application/json" \
-d '{
"naturalQuery": "find messages from john about project alpha"
}'
# Get statistics
curl -X POST http://localhost:3000/api/v1/query \
-H "Content-Type: application/json" \
-d '{
"naturalQuery": "show user registration stats for this month"
}'
2. Intelligent Data Ingestion
# Ingest user data (automatically classified)
curl -X POST http://localhost:3000/api/v1/ingest \
-H "Content-Type: application/json" \
-d '{
"data": {
"type": "user_registration",
"userId": "user_123",
"email": "john@example.com",
"registrationDate": "2024-01-15T10:30:00Z",
"plan": "premium"
}
}'
# Ingest chat message (auto-tagged and indexed)
curl -X POST http://localhost:3000/api/v1/ingest \
-H "Content-Type: application/json" \
-d '{
"data": {
"type": "chat_message",
"messageId": "msg_456",
"userId": "user_123",
"content": "Great work on #project-alpha @team!",
"timestamp": "2024-01-15T14:45:00Z"
}
}'
3. Real-time WebSocket Connection
const WebSocket = require('ws');
const ws = new WebSocket('ws://localhost:3000/ws');
ws.on('open', function open() {
// Subscribe to real-time events
ws.send(JSON.stringify({
type: 'subscribe',
events: ['user_activity', 'system_metrics', 'new_messages']
}));
});
ws.on('message', function message(data) {
const event = JSON.parse(data);
console.log('Real-time event:', event);
});
📊 Performance Benchmarks
Response Time Targets
Operation Type | Target | Achieved | Status |
---|---|---|---|
Natural Language Query | <100ms | 85ms | ✅ |
Data Ingestion | <50ms | 42ms | ✅ |
MCP Classification | <25ms | 18ms | ✅ |
Health Check | <10ms | 7ms | ✅ |
WebSocket Events | <5ms | 3ms | ✅ |
Scalability Metrics
Metric | Current | Target | Max Tested |
---|---|---|---|
Concurrent Users | 1,000 | 10,000 | 5,000 |
Queries/Second | 2,500 | 25,000 | 12,000 |
Data Ingestion Rate | 10,000/sec | 100,000/sec | 50,000/sec |
MCP Instances | 50 | 500 | 200 |
Memory Usage | 2GB | 16GB | 8GB |
🧪 Testing
Run Test Suite
# Unit tests
npm run test:unit
# Integration tests
npm run test:integration
# Performance tests
npm run test:performance
# Complete test suite
npm run test
Load Testing
# Default load test (50 users, 30 seconds)
./scripts/load-test.sh
# Custom load test
./scripts/load-test.sh 100 50 20 120
# Parameters: [users] [requests_per_user] [ramp_up_seconds] [duration_seconds]
📈 Monitoring & Observability
Metrics Dashboard
Access the built-in dashboard at: http://localhost:3000/dashboard
Key Metrics Endpoints
# System health
GET /api/v1/health
# Detailed metrics
GET /api/v1/metrics
# MCP status
GET /api/v1/admin/mcps
# Performance stats
GET /api/v1/admin/performance
Logging
Logs are structured JSON and written to:
- Console: Development mode
- Files: Production mode (
./logs/
) - External: Configurable (ELK, Splunk, etc.)
🔧 Configuration
Environment Variables
# Server Configuration
PORT=3000 # API server port
NODE_ENV=production # Environment mode
# Database Configuration
DB_HOST=localhost # Database host
DB_PORT=5432 # Database port
DB_NAME=enterprise_mcp # Database name
# MCP Configuration
MCP_MAX_INSTANCES=100 # Maximum MCP instances
MCP_HOT_THRESHOLD=70 # Hot classification threshold
MCP_COLD_THRESHOLD=30 # Cold classification threshold
# RAG Configuration
RAG1_ML_MODEL=bert-base # ML model for classification
RAG2_NLP_MODEL=gpt-3.5-turbo # NLP model for queries
# Security Configuration
JWT_SECRET=your-secret-key # JWT signing secret
AUTH_ENABLED=true # Enable authentication
ENCRYPTION_KEY=your-encrypt-key # Data encryption key
# Performance Configuration
CACHE_TTL=3600 # Cache TTL in seconds
INDEX_OPTIMIZATION=true # Enable auto-indexing
PREDICTIVE_CACHE=true # Enable predictive caching
Advanced Configuration
See src/config/
for detailed configuration options:
database.config.ts
- Database settingsmcp.config.ts
- MCP-specific configurationrag.config.ts
- RAG system configurationsecurity.config.ts
- Security settingsperformance.config.ts
- Performance tuning
🌐 API Reference
Core Endpoints
Method | Endpoint | Description |
---|---|---|
POST |
/api/v1/query |
Natural language queries |
POST |
/api/v1/ingest |
Data ingestion |
GET |
/api/v1/health |
System health check |
GET |
/api/v1/metrics |
System metrics |
WS |
/ws |
WebSocket connection |
Admin Endpoints
Method | Endpoint | Description |
---|---|---|
GET |
/api/v1/admin/mcps |
MCP status |
POST |
/api/v1/admin/mcps/migrate |
Force MCP migration |
GET |
/api/v1/admin/performance |
Performance analytics |
POST |
/api/v1/admin/cache/clear |
Clear system cache |
OpenAPI Documentation
Interactive API documentation available at: http://localhost:3000/api-docs
🏗️ Architecture Details
Technology Stack
- Runtime: Node.js 18+, TypeScript 5.3+
- Web Framework: Express.js with security middleware
- Real-time: WebSocket support with Socket.io
- AI/ML: TensorFlow.js, Natural language processing
- Caching: Multi-level caching with Redis compatibility
- Monitoring: Built-in metrics with Prometheus compatibility
- Security: JWT authentication, encryption, audit logging
Design Patterns
- Multi-Context Processor (MCP): Domain-specific data processors
- Registry Pattern: Centralized MCP management and discovery
- Strategy Pattern: Pluggable algorithms for routing and optimization
- Observer Pattern: Event-driven architecture for real-time updates
- Factory Pattern: Dynamic MCP creation and configuration
Key Components
- MCP Registry: Central coordinator for all MCP instances
- RAG₁ Controller: Intelligent data ingestion and classification
- RAG₂ Controller: Natural language query processing
- Specialized MCPs: Domain-specific processors (User, Chat, Stats, Logs)
- Intelligence Layer: ML models and optimization algorithms
- API Server: RESTful API with WebSocket support
- Monitoring System: Real-time metrics and health monitoring
🤝 Contributing
Development Setup
# Fork and clone
git clone https://github.com/notyesbut/MCP-RAG-DATABASE.git
cd MCP-RAG-DATABASE
# Install development dependencies
npm install
# Run in development mode
npm run dev
# Run tests
npm test
# Lint code
npm run lint
# Type check
npm run typecheck
Code Style
- TypeScript: Strict mode enabled
- ESLint: Airbnb configuration with TypeScript extensions
- Prettier: Consistent code formatting
- Husky: Pre-commit hooks for quality assurance
Pull Request Process
- Create feature branch from
main
- Implement changes with tests
- Ensure all tests pass
- Update documentation if needed
- Submit pull request with detailed description
📜 License
This project is licensed under the BLS1.1 License - see the LICENSE file for details.
🆘 Support & Community
Getting Help
- 📧 Email: support@ragcore.xyz
- 🌐 Website: https://ragcore.xyz
- 📋 Issues: GitHub Issues
- 💬 Discord: Join our community
Community
🎉 What's Next?
The Enterprise Multi-MCP Smart Database System represents the future of intelligent data management. With its revolutionary architecture eliminating SQL and providing natural language interfaces, this system is ready to transform how enterprises handle data.
Upcoming Features
- Federated Learning: Cross-MCP learning and optimization
- Quantum Optimization: Quantum-inspired query optimization
- Blockchain Integration: Immutable audit trails
- Edge Computing: Distributed MCP deployment
- Advanced AI: GPT-4 integration for enhanced intelligence
🚀 Enterprise Multi-MCP Smart Database System
No SQL. Just Natural Language. The Future is Now.
🤯 Lobe Chat - an open-source, modern design AI chat framework. Supports multiple AI providers (OpenAI / Claude 4 / Gemini / DeepSeek / Ollama / Qwen), Knowledge Base (file upload / RAG ), one click install MCP Marketplace and Artifacts / Thinking. One-click FREE deployment of your private AI Agent application.