meai-azure-ai-foundry-mcp-sample
このプロジェクトは、Azure AI Foundryを利用したAIモデルの構築とデプロイを支援するサンプルコードを提供します。JavaScriptを用いて、AI機能を簡単に統合できるように設計されています。特に、データの前処理やモデルのトレーニングに関する基本的な実装が含まれており、開発者がAI技術を活用する際の参考になります。
GitHubスター
4
ユーザー評価
未評価
お気に入り
0
閲覧数
18
フォーク
1
イシュー
0
MEAI, Azure AI Foundry, Foundry Local and MCP Sample
Did you know .NET is the most versatile language to build both frontend and backend apps? In addition to that, .NET is also capable of building AI infused app really easily. This repository provides several sample apps using Microsoft.Extensions.AI, Azure AI Foundry, Foundry Local and MCP server/client.
Prerequisites
Getting started
Build Foundry Local SDK
NOTE: This is an interim solution until the official NuGet package is ready.
Clone Foundry Local repository.
git clone https://github.com/microsoft/Foundry-Local.git foundry-local
Build the C# SDK.
cd foundry-local/sdk/cs dotnet restore && dotnet build
Get the NuGet package location.
# bash/zsh FOUNDRY_LOCAL_NUGET_PACKAGE_PATH=$(find $(pwd) -name "*.nupkg" -type f -exec dirname {} \; | sort -u)
# PowerShell $FOUNDRY_LOCAL_NUGET_PACKAGE_PATH = $(Get-ChildItem -Path . -Filter *.nupkg -Recurse).Directory.FullName
Get ready to run apps on your local machine
Clone this repository.
git clone https://github.com/devkimchi/meai-azure-ai-foundry-mcp-sample.git
Create
nuget.config
.{{FOUNDRY_LOCAL_NUGET_PACKAGE_PATH}}
is the value from the previous section.# bash/zsh cd meai-azure-ai-foundry-mcp-sample cat ./nuget.sample.config \ | sed 's|/path/to/foundry-local/sdk/cs/src/bin/Debug|{{FOUNDRY_LOCAL_NUGET_PACKAGE_PATH}}|g' \ > nuget.config
# PowerShell cd meai-azure-ai-foundry-mcp-sample $(Get-Content -Path ./nuget.sample.config) ` -replace "/path/to/foundry-local/sdk/cs/src/bin/Debug", "{{FOUNDRY_LOCAL_NUGET_PACKAGE_PATH}}" ` | Out-File -Path nuget.config -Force
NOTE: This step is only required until the official NuGet package is published.
Run Microsoft.Extensions.AI
sample app
Make sure you have API keys for OpenAI, Azure OpenAI, GitHub Models, Anthropic and/or Google Vertex AI.
Store those API keys to user secrets:
# OpenAI dotnet user-secrets --project ./src/Meai.ClientApp set ConnectionStrings:openai "Endpoint=https://api.openai.com/v1;Key={{OPENAI_API_KEY}}" # Azure OpenAI dotnet user-secrets --project ./src/Meai.ClientApp set ConnectionStrings:openai "Endpoint={{AZURE_OPENAI_ENDPOINT}};Key={{AZURE_OPENAI_API_KEY}}" # GitHub Models dotnet user-secrets --project ./src/Meai.ClientApp set ConnectionStrings:openai "Endpoint=https://models.inference.ai.azure.com;Key={{GITHUB_PAT}}" # Anthropic dotnet user-secrets --project ./src/Meai.ClientApp set ConnectionStrings:anthropic "Endpoint=https://api.anthropic.com;Key={{ANTHROPIC_API_KEY}}" # Google Vertex AI dotnet user-secrets --project ./src/Meai.ClientApp set ConnectionStrings:google "Endpoint=https://generativelanguage.googleapis.com;Key={{GOOGLE_API_KEY}}"
Make sure which LLM you're going to use at
src/Meai.ClientApp/appsettings.json
// To use OpenAI, Azure OpenAI or GitHub Models { "MEAI": { "ChatClient": "openai" } }
// To use Anthropic { "MEAI": { "ChatClient": "anthropic" } }
// To use Google Vertex AI { "MEAI": { "ChatClient": "google" } }
Run the app.
dotnet watch run --project ./src/Meai.ClientApp
Run Azure AI Foundry sample app
Make sure you have an API key for Azure AI Foundry.
Store the API key to user secrets:
# Azure AI Foundry dotnet user-secrets --project ./src/Meai.ClientApp set ConnectionStrings:foundry "Endpoint={{AZURE_AI_FOUNDRY_ENDPOINT}};Key={{AZURE_AI_FOUNDRY_API_KEY}}"
Make sure which LLM you're going to use at
src/Foundry.ClientApp/appsettings.json
{ "MEAI": { "ChatClient": "foundry" } }
Run the app.
dotnet watch run --project ./src/Foundry.ClientApp
Run Foundry Local sample app
Make sure you have installed Foundry Local CLI.
Add model to Foundry Local. You can add any model from the list by running
foundry model ls
.foundry model download qwen2.5-0.5b
Make sure which LLM you're going to use at
src/Foundry.ClientApp/appsettings.json
{ "MEAI": { "ChatClient": "local" } }
Run the app.
dotnet watch run --project ./src/Foundry.ClientApp
Run MCP server/client sample app
Make sure you have API keys for OpenAI, Azure OpenAI or GitHub Models.
Store those API keys to user secrets:
# OpenAI dotnet user-secrets --project ./src/Meai.ClientApp set ConnectionStrings:openai "Endpoint=https://api.openai.com/v1;Key={{OPENAI_API_KEY}}" # Azure OpenAI dotnet user-secrets --project ./src/Meai.ClientApp set ConnectionStrings:openai "Endpoint={{AZURE_OPENAI_ENDPOINT}};Key={{AZURE_OPENAI_API_KEY}}" # GitHub Models dotnet user-secrets --project ./src/Meai.ClientApp set ConnectionStrings:openai "Endpoint=https://models.inference.ai.azure.com;Key={{GITHUB_PAT}}"
Run the MCP server app.
dotnet run --project ./src/McpTodo.ServerApp
Run the MCP client app in another terminal.
dotnet watch run --project ./src/mcpTodo.ClientApp
Known Issues: Installing Foundry Local CLI
On Windows, if you keep failing to install Foundry Local CLI on your machine, try this way as a workaround:
# Download the package and its dependency
$releaseUri = "https://github.com/microsoft/Foundry-Local/releases/download/v0.3.9267/FoundryLocal-x64-0.3.9267.43123.msix"
Invoke-WebRequest -Method Get -Uri $releaseUri -OutFile ./FoundryLocal.msix
$crtUri = "https://aka.ms/Microsoft.VCLibs.x64.14.00.Desktop.appx"
Invoke-WebRequest -Method Get -Uri $crtUri -OutFile ./VcLibs.appx
# Install the Foundry Local package
Add-AppxPackage ./FoundryLocal.msix -DependencyPath ./VcLibs.appx