GitHubスター
0
ユーザー評価
未評価
フォーク
0
イシュー
0
閲覧数
1
お気に入り
0
AgentBridge-MCP
MCP server for an AI assistant
AgentBridge-MCP
A modular, extensible Model Context Protocol (MCP) server for secure and auditable AI agent task routing.
🔧 What is This?
This repo is a foundational local MCP server built with Python + FastAPI that:
- Accepts structured JSON requests for tasks
- Routes them to secure modular task handlers (e.g. email, CSV parsing, summarization)
- Can be extended for any AI agent or tool
🚀 What You Get Out of the Box
✅ FastAPI MCP server
✅ Modular task/
folder (e.g. echo, get_time)
✅ Simple POST /mcp
handler
✅ Dispatch logic with task map
✅ Ready for local testing & extension
💡 Why Use It?
This MCP server acts as the command center for AI agents.
It separates "what needs to be done" from "how it’s done" — enabling:
- 📦 Task modularity
- 🔐 A2SPA-compliant secure execution
- ⚡ Agent-Agnostic Logic (GPT, Claude, Ollama, etc.)
📁 Folder Structure
app/ ├── main.py # FastAPI entry point ├── router.py # Dispatch logic └── tasks/ ├── echo.py ├── get_time.py └── summarize_text.py
tests/ ├── test_mcp.py
run.sh # Dev runner requirements.txt # Dependencies
📊 Workflow Diagram
┌───────────────┐
│ HTTP Client │ (e.g. curl, frontend)
└──────┬────────┘
│ POST /mcp
┌──────▼───────┐
│ main.py │ (FastAPI app)
└──────┬───────┘
│
┌──────▼───────┐
│ router.py │ → Parses task key
└──────┬───────┘
│
┌──────▼────────────────────────┐
│ app/tasks/{task}.py │ → Executes logic (e.g., datetime, echo, LLM)
└────────────┬──────────────────┘
│
┌──────▼───────┐
│ Response JSON│
└──────────────┘
📈 Coming Soon
This core server will soon power a Modular Investor Outreach AI Agent, with:
CSV-based email flows
Validation + personalization via MCP
PKI-audited A2SPA security
GPT/Ollama integration
🧠 Inspired By
Anthropic’s Claude MCP architecture
A2SPA Protocol (Agent-to-Agent Secure Protocol Architecture)
---
🛠 How to Run the Email Agent System
🔧 1. Install dependencies
pip install -r requirements.txt
📡 2. Start the MCP server (backend task router)
uvicorn app.main:app --reload
🧠 3. Optional: Start Ollama if not running already
ollama run llama3
🖥️ 4. Launch the Streamlit UI
streamlit run streamlit_app.py
💡 What This System Does
Upload a .csv of names and emails (columns: name,email)
Set a subject and shared body for the outreach message
Attach any files (pitch decks, PDFs, etc.)
Ollama personalizes each email with greeting and sign-off
MCP server dispatches email sending via Gmail SMTP
---
📁 File Requirements
Make sure .env is configured with: EMAIL_USER=your@gmail.com EMAIL_PASS=your_app_password # from Gmail App Passwords