Insight_Platform
The Insight Platform is a modular agentic system prototype that utilizes LangGraph and Ollama to curate AI insights through scraping, summarization, tagging, and publishing. Built with FastAPI and Streamlit, it allows users to browse insights in markdown format.
GitHub Stars
1
User Rating
Not Rated
Favorites
0
Views
19
Forks
0
Issues
0
README
Insight Platform — AI Signal Connector Prototype
Agent System, Protocol Design, and Modular LLM Architecture
Modular Agentic System for Curated AI Insights Using LangGraph + Ollama
What This Is
A modular Python project combining:
- LangGraph Agent Flow:
Scraper → Summarizer → Tagger → Connector → Publisher - Ollama for Local Summarization:
Using/api/generate
endpoint with streamed response handling - Streamlit UI for End-User Display:
Browse markdown-formatted insights with tags and source URLs - Markdown + JSON File Storage:
Insights saved as.md
+.meta.json
pairs
Project Structure
backend/
├── app.py (FastAPI routes)
├── core/orchestrator.py (LangGraph flow)
├── agents/ (scraper_agent, summarizer_agent, etc.)
├── protocols/ (mcp, a2a, acp structures)
├── utils/
streamlit_ui/
├── app.py (Streamlit frontend)
docker-compose.yml
README.md
How to Set Up Locally
Clone the Repo
git clone https://github.com/yourusername/insight-platform.git
cd insight-platform
Pull Required Ollama Model
Start only Ollama service first:
docker compose up ollama
Then pull the model:
curl -X POST http://localhost:11434/api/pull \
-H "Content-Type: application/json" \
-d '{"name": "llama3"}'
Build and Run Backend + UI
docker compose up --build
- Backend available at:
http://localhost:8000
- Streamlit UI at:
http://localhost:8501
Workflow Summary
- Send a URL to
/run_pipeline
:- The pipeline scrapes → summarizes → tags → connects → publishes.
- Visit Streamlit UI or call
/list_insights
API to view insights. - Insights include:
- Title, tags, content preview, original source URL.
Current Scope + Limitations
- No CI/CD or Kubernetes deployment yet.
- Models must be pulled manually the first time.
- Local file storage only; no database integration yet.
Future Enhancements
- CI/CD pipelines (GitHub Actions, Docker Registry)
- Full Kubernetes Helm Charts
- OAuth2 login on Streamlit UI
- Ollama model pre-pull automation
Contribution Guidelines
- Fork → Clone → Submit PR
- Focus on modular, readable, community-friendly code.