NCBI-Database-MCP
NCBIデータベースにアクセスし、バイオインフォマティクス関連のデータを取得するためのPythonライブラリです。使いやすいAPIを提供し、データの検索や取得を簡素化します。データ解析や研究に役立つツールとして、多くの研究者に利用されています。
GitHubスター
1
ユーザー評価
未評価
お気に入り
0
閲覧数
12
フォーク
0
イシュー
0
NCBI Database MCP
🔍 MCP server for NCBI bioinformatics tools and disease-focused gene expression research
Enable AI assistants to discover gene expression datasets by disease/condition and access comprehensive NCBI databases through natural language. Perfect for researchers studying disease mechanisms and therapeutic targets.
🧬 Features
- 🔬 Disease-Focused GEO Search - Discover gene expression datasets by disease/condition and organism
- 📊 Comprehensive Study Metadata - Get detailed methodology, platform, and sample information
- 🧬 Gene-to-Genomic Conversion - Convert gene names to genomic DNA sequences
- 🐭 Multi-Species Support - Human, mouse, and rat datasets
- 📈 Research Methodology Details - RNA-Seq, microarray, ChIP-Seq, and other techniques
- 🔗 Direct Database Links - Easy access to full datasets and original studies
🚀 Quick Start
Installation
# Clone repository
git clone https://github.com/hpend2373/NCBI-Database-MCP.git
cd NCBI-Database-MCP
# Install dependencies
pip install -r requirements.txt
Basic Usage
🚀 RECOMMENDED: Use FastMCP Server for Best Performance
# Start the FastMCP server (RECOMMENDED)
./run_fastmcp_gene_server.sh
# Alternative: Standard MCP server (slower startup)
python src/gene_to_genomic_server.py
Why FastMCP?
- ⚡ Faster startup - Instant server initialization
- 🔧 Easier debugging - Better error messages and logging
- 📊 Built-in monitoring - Performance metrics included
- 🎯 Optimized for research - Designed specifically for bioinformatics workflows
Configuration
Add to your MCP client config:
{
"mcpServers": {
"ncbi-database": {
"command": "python",
"args": ["src/gene_to_genomic_server.py"],
"cwd": "/path/to/NCBI-Database-MCP",
"env": {
"NCBI_API_KEY": "your_api_key_here"
}
}
}
}
Alternative: Set global environment variable
export NCBI_API_KEY="your_api_key_here"
Then use simpler config:
{
"mcpServers": {
"ncbi-database": {
"command": "python",
"args": ["src/gene_to_genomic_server.py"],
"cwd": "/path/to/NCBI-Database-MCP"
}
}
}
💡 Usage Examples
🔬 Disease Expression Research (Primary Use Case)
User: "Find gene expression datasets for Alzheimer's disease in humans"
AI: [calls search_geo_datasets] →
📊 Returns 10 datasets with:
- Study methodology (RNA-Seq, Microarray)
- Sample sizes and experimental design
- Platform information (Illumina, Affymetrix)
- Research summaries and direct GEO links
User: "Show me cancer expression studies in mice using RNA sequencing"
AI: [calls search_geo_datasets] →
🧪 Filtered results showing:
- RNA-Seq datasets only
- Mouse-specific cancer studies
- Detailed experimental protocols
🧬 Gene-to-Genomic Analysis
User: "Get the genomic sequence for BRCA1"
AI: [calls gene_to_genomic_sequence] → Returns genomic DNA sequence in FASTA format
📍 Gene Information & Location
User: "Find information about TP53 gene"
AI: [calls search_gene_info] → Returns gene location, function, and coordinates
🎯 Coordinate-Based Sequence Retrieval
User: "Get sequence from chr17:43044295-43125483"
AI: [calls get_genomic_sequence] → Returns DNA sequence for specified coordinates
🛠️ Available Tools
🔬 search_geo_datasets
(Primary Tool)
Discover gene expression datasets by disease/condition and organism
Parameters:
disease
(required) - Disease or condition name- Examples: "cancer", "diabetes", "Alzheimer", "heart disease", "depression"
organism
- Target organism (default: "Homo sapiens")- Options: "Homo sapiens", "Mus musculus", "Rattus norvegicus"
study_type
- Expression study methodology (optional, default: "Expression profiling by high throughput sequencing")- Options: "Expression profiling by array", "Expression profiling by high throughput sequencing"
- Default: RNA-Seq - Most comprehensive and current sequencing technology
max_results
- Maximum results to return (1-50, default: 10)
Detailed Output:
- 📊 Dataset Information: GDS accession numbers and titles
- 🔬 Study Methodology:
- RNA-Seq (High-throughput transcriptome sequencing) - DEFAULT
- Microarray (Hybridization-based gene expression)
- ChIP-Seq (Chromatin immunoprecipitation sequencing)
- SAGE (Serial analysis of gene expression)
- 🧬 Data Type Classification:
- Single-Cell RNA-Seq 🧩 - Individual cell-level gene expression
- Bulk RNA-Seq 📦 - Tissue/population-level gene expression
- Spatial Transcriptomics 🗺️ - Location-aware gene expression
- 🧪 Platform Details: Illumina, Affymetrix, Agilent technologies
- 📈 Experimental Design: Sample counts, tissue types, treatment conditions
- 📝 Research Context: Study summaries and disease relevance
- 🔗 Direct Access: Links to full datasets on NCBI GEO
🧬 gene_to_genomic_sequence
Convert gene name to genomic DNA sequence
Parameters:
gene_name
(required) - Gene symbol (e.g., "BRCA1", "TP53")organism
- Target organism (default: "human")sequence_type
- "genomic", "cds", "mrna", "protein"output_format
- "fasta", "genbank", "json"
📍 search_gene_info
Search for gene information and genomic location
Parameters:
gene_name
(required) - Gene symbol or nameorganism
- Target organism (default: "human")
🎯 get_genomic_sequence
Get genomic sequence from chromosome coordinates
Parameters:
chromosome
(required) - Chromosome accession (e.g., "NC_000017.11")start
(required) - Start positionend
(required) - End positionoutput_format
- "fasta", "json"
⚙️ Configuration
Environment Variables
You can configure the server using environment variables:
# Copy example file and edit
cp .env.example .env
# Or set directly
export NCBI_API_KEY="your_api_key_here"
# Get your free API key from: https://www.ncbi.nlm.nih.gov/account/
# Without API key: 3 requests/second
# With API key: 10 requests/second
📁 Project Structure
NCBI-Database-MCP/
├── README.md # Documentation
├── requirements.txt # Python dependencies
├── pyproject.toml # Project configuration
├── .env.example # Environment variables template
├── run_fastmcp_gene_server.sh # Launch script
└── src/
├── gene_to_genomic_server.py # Standard MCP server
└── fastmcp_gene_server.py # FastMCP server (recommended)
📈 Performance Tips
🔬 GEO Dataset Search Optimization
- Use specific disease terms: "lung cancer" > "cancer", "type 2 diabetes" > "diabetes"
- Combine with study types: Filter by methodology for targeted results
- Start with small result sets: Use max_results=5-10 for initial exploration
- Organism specificity: Use exact names ("Homo sapiens" not "human")
🐛 Troubleshooting
Common Issues
Gene not found
# Check gene name spelling
# Try alternative gene symbols
# Verify organism specification
No GEO datasets found
# Try broader disease terms (e.g., "cancer" instead of "lung adenocarcinoma")
# Check organism name (use "Homo sapiens" not "human")
# Try without study_type filter
# Verify disease spelling and terminology
API rate limiting
# Get free NCBI API key: https://www.ncbi.nlm.nih.gov/account/
# Set NCBI_API_KEY environment variable
# Without key: 3 requests/second limit
# With key: 10 requests/second limit
Network timeouts
# Check internet connection
# Increase timeout values
# Retry failed requests
📚 Resources
🆘 Support
- 🐛 Bug Reports: GitHub Issues
- 💡 Feature Requests: GitHub Issues
- 📖 Documentation: README.md
Happy genomics research! 🧬🔍