modelctx
modelctx is a tool designed to streamline model management in Python. Users can easily manage versioning and track dependencies, facilitating a smoother development process. It is particularly equipped with features that ensure reproducibility in machine learning projects.
GitHub Stars
8
User Rating
Not Rated
Favorites
0
Views
63
Forks
0
Issues
0
ModelContextKit
๐ A comprehensive CLI tool for rapidly creating, configuring, and deploying Model Context Protocol (MCP) servers
๐ Visit our website: modelcontextkit.com
What is MCP?
The Model Context Protocol (MCP) is an open standard developed by Anthropic that enables AI applications (like Claude) to connect with external tools, data sources, and APIs in a standardized way. Think of it as "USB-C for AI applications" - it provides a universal connector between AI models and external systems.
Features
โจ Quick Setup: Generate production-ready MCP servers in minutes, not hours
๐ง Multiple Backends: Support for databases, APIs, filesystems, web scrapers, email, and cloud storage
๐ฏ Interactive Wizard: Guided setup with intelligent configuration prompts
๐ Comprehensive Templates: Pre-built templates following MCP best practices
๐ Security First: Built-in security features and input validation
๐งช Testing Ready: Generated projects include test suites and examples
๐ Auto Documentation: Comprehensive documentation generation
๐จ Claude Desktop Integration: Automatic configuration for Claude Desktop
โ
Production Ready: Generates syntactically correct, tested code that works out of the box
Recent Improvements
๐ง Fixed Code Generation: Resolved indentation and syntax issues in generated MCP servers
๐ Corrected MCP Schema: Updated to use proper input_schema format
๐งช Improved Tests: Updated test templates to use modern MCP patterns
๐ Fixed Resource URIs: Simplified resource implementations to avoid template issues
โจ Enhanced Reliability: All backend types now generate working, compilable code
Installation
# Install base package
pip install modelcontextkit
# Install with specific backend support
pip install modelcontextkit[database]
pip install modelcontextkit[api]
pip install modelcontextkit[filesystem]
pip install modelcontextkit[webscraper]
pip install modelcontextkit[email]
pip install modelcontextkit[cloudstorage]
# Install with all backends
pip install modelcontextkit[all]
Quick Start
Interactive Wizard (Recommended)
modelctx wizard
Command Line Interface
# List available backend types
modelctx list
# Create a database MCP server
modelctx create my-db-server --backend database
# Create an API integration server
modelctx create my-api-server --backend api
# View templates
modelctx templates
Supported Backends
๐๏ธ Database Backend
Connect to SQL databases (PostgreSQL, MySQL, SQLite) with built-in connection pooling and security.
Generated Tools:
execute_query(query: str)- Execute SQL queries safelyget_table_schema(table_name: str)- Get table structurelist_tables()- List all tables
Configuration:
- Database connection parameters
- Connection pooling settings
- Query timeout and limits
๐ REST API Backend
Integrate with REST APIs with authentication, rate limiting, and error handling.
Generated Tools:
api_request(endpoint: str, method: str, data: dict)- Make HTTP requestsget_api_status()- Check API health
Authentication Support:
- Bearer tokens
- API keys
- OAuth2 flows
๐ Filesystem Backend
Access and manipulate local files and directories with security controls.
Generated Tools:
read_file(file_path: str)- Read file contentswrite_file(file_path: str, content: str)- Write to fileslist_directory(dir_path: str)- List directory contentssearch_files(pattern: str, directory: str)- Search for files
๐ท๏ธ Web Scraper Backend
Scrape and parse web content with respect for robots.txt and rate limiting.
Generated Tools:
scrape_url(url: str)- Extract content from web pagesextract_links(url: str)- Get all links from a pagetake_screenshot(url: str)- Capture page screenshots
๐ง Email Backend
Send and receive emails via SMTP/IMAP with support for attachments.
Generated Tools:
send_email(to: str, subject: str, body: str)- Send emailslist_emails(folder: str, limit: int)- List emails from folderread_email(email_id: str)- Read specific email
โ๏ธ Cloud Storage Backend
Connect to cloud storage services (AWS S3, Google Cloud Storage, Azure Blob).
Generated Tools:
upload_file(local_path: str, remote_key: str)- Upload filesdownload_file(remote_key: str, local_path: str)- Download fileslist_objects(prefix: str)- List stored objectsdelete_object(key: str)- Delete objects
Generated Project Structure
my-mcp-server/
โโโ server.py # Main MCP server file
โโโ requirements.txt # Python dependencies
โโโ pyproject.toml # Python project metadata
โโโ README.md # Project documentation
โโโ .env.template # Environment variables template
โโโ .gitignore # Git ignore rules
โโโ config/
โ โโโ config.yaml # Main configuration file
โ โโโ claude_desktop_config.json # Claude Desktop integration
โ โโโ logging.yaml # Logging configuration
โโโ src/
โ โโโ __init__.py
โ โโโ models/ # Data models
โ โโโ services/ # Business logic
โ โโโ utils/ # Utility functions
โโโ tests/
โ โโโ __init__.py
โ โโโ test_server.py # Server tests
โ โโโ test_tools.py # Tool-specific tests
โโโ docs/
โ โโโ API.md # API documentation
โ โโโ DEPLOYMENT.md # Deployment guide
โโโ scripts/
โโโ setup.sh # Setup script
โโโ deploy.sh # Deployment script
Configuration
The tool supports flexible configuration through:
- Interactive prompts during wizard mode
- Configuration files (YAML/JSON)
- Environment variables for sensitive data
- Command-line arguments for automation
Example configuration:
# config/config.yaml
server:
name: "my-api-server"
description: "API integration MCP server"
backend:
type: "api"
base_url: "https://api.example.com"
auth_type: "bearer"
rate_limit: 60
security:
validate_inputs: true
log_requests: true
timeout: 30
Claude Desktop Integration
Generated servers automatically include configuration for Claude Desktop:
{
"mcpServers": {
"my-mcp-server": {
"command": "python",
"args": ["/path/to/my-mcp-server/server.py"],
"env": {
"API_KEY": "your-api-key",
"DATABASE_URL": "your-db-connection"
}
}
}
}
Development and Testing
Each generated project includes:
- Unit tests with pytest
- Syntax validation - all generated code is syntactically correct
- MCP Inspector integration for testing
- Comprehensive test suites for all tools and resources
- Configuration validation and error handling
# Navigate to your generated project
cd my-mcp-server
# Install dependencies (if not done during creation)
pip install -r requirements.txt
# Validate the generated code syntax
python -c "import server; print('Server syntax OK')"
# Run the test suite
python -m pytest tests/ -v
# Test with MCP Inspector
npx @modelcontextprotocol/inspector python server.py
# Run the server directly
python server.py
Security Features
- ๐ Input validation and sanitization
- ๐ก๏ธ Access controls and permission systems
- ๐ Audit logging for all operations
- ๐ Secure credential management
- ๐ซ SQL injection prevention
- ๐ CORS and rate limiting
Quality Assurance
ModelContextKit generates high-quality, production-ready code:
- โ Syntax Validation: All generated Python code passes syntax validation
- โ MCP Compliance: Generated servers follow MCP protocol specifications
- โ Type Safety: Proper type hints and schema definitions
- โ Error Handling: Comprehensive exception handling and logging
- โ Test Coverage: Generated test suites validate all functionality
- โ Documentation: Auto-generated documentation and examples
CLI Reference
# Create new MCP server
modelctx create <project-name> --backend <type> [options]
# Interactive wizard
modelctx wizard
# List available backends
modelctx list
# Manage templates
modelctx templates [list|add|remove]
# Generate documentation
modelctx docs <project-path>
# Deploy server (if configured)
modelctx deploy <project-name>
Contributing
We welcome contributions! Please see our Contributing Guide for details.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Support
- ๐ Official Website
- ๐ Documentation
- ๐ Bug Reports
- ๐ฌ Discussions
- ๐ง Create an issue for support
Made with โค๏ธ for the MCP community