mcp-server

An MCP server for interacting with the Financial Datasets stock market API.

GitHub Stars

497

User Rating

Not Rated

Favorites

0

Views

25

Forks

83

Issues

9

Installation
Difficulty
Intermediate
Estimated Time
10-20 minutes
Requirements
Python 3.10以上
uvパッケージマネージャー

Installation

Installation

Prerequisites

Python: 3.10 or higher
uv: Package manager

Installation Steps

1. Clone Repository

bash
git clone https://github.com/financial-datasets/mcp-server
cd mcp-server

2. Install uv

bash

macOS/Linux

curl -LsSf https://astral.sh/uv/install.sh | sh

Windows

curl -LsSf https://astral.sh/uv/install.ps1 | powershell

3. Install Dependencies

bash
uv venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
uv add "mcp[cli]" httpx  # On Windows: uv add mcp[cli] httpx

4. Set Environment Variables

bash
cp .env.example .env
FINANCIAL_DATASETS_API_KEY=your-financial-datasets-api-key

5. Run the Server

bash
uv run server.py

Configuration

Configuration

Claude Desktop Setup

Edit ~/Library/Application Support/Claude/claude_desktop_config.json:
json
{
  "mcpServers": {
    "financial-datasets": {
      "command": "/path/to/uv",
      "args": [
        "--directory",
        "/absolute/path/to/financial-datasets-mcp",
        "run",
        "server.py"
      ]
    }
  }
}

Environment Variables

Set the following environment variables as needed:
bash
export FINANCIAL_DATASETS_API_KEY="your-api-key"

Security Settings

Store API keys in environment variables or secure configuration files
Set appropriate file access permissions

Examples

Examples

Basic Usage

Using with Claude Desktop

1Verify MCP Server Startup
Open Claude Desktop and confirm that the configuration has been loaded correctly.
2Execute Basic Commands

   Available tools from this MCP server:
   - tool1: Description of tool1
   - tool2: Description of tool2
   

Programmatic Usage

python
import requests

def call_mcp_tool(tool_name, params):
    response = requests.post(
        'http://localhost:3000/mcp/call',
        json={
            'tool': tool_name,
            'parameters': params
        }
    )
    return response.json()

Usage example

result = call_mcp_tool('get_current_stock_price', {'ticker': 'AAPL'}) print(result)

Use Cases

Retrieve income statements for a specific company using an AI assistant for analysis.
Fetch real-time stock prices to make investment decisions.
Get the latest news about a company to understand market trends.
Analyze historical stock price data to identify price trends.