mcp-memory-service

Universal MCP memory service with semantic search, multi-client support, and autonomous consolidation for Claude Desktop, VS Code, and 13+ AI applications

GitHub Stars

671

User Rating

Not Rated

Favorites

0

Views

27

Forks

93

Issues

3

README
MCP Memory Service

License: Apache 2.0
GitHub stars
Production Ready

Works with Claude
Works with Cursor
MCP Protocol
Multi-Client

Universal MCP memory service providing semantic memory search and persistent storage for AI assistants. Works with Claude Desktop, VS Code, Cursor, Continue, and 13+ AI applications with SQLite-vec for fast local search and Cloudflare for global distribution.

MCP Memory Service
πŸš€ Quick Start (2 minutes)
Universal Installer (Recommended)
# Clone and install with automatic platform detection
git clone https://github.com/doobidoo/mcp-memory-service.git
cd mcp-memory-service
python install.py
Docker (Fastest)
# For MCP protocol (Claude Desktop)
docker-compose up -d

# For HTTP API (Web Dashboard)
docker-compose -f docker-compose.http.yml up -d
Smithery (Claude Desktop)
# Auto-install for Claude Desktop
npx -y @smithery/cli install @doobidoo/mcp-memory-service --client claude
⚠️ First-Time Setup Expectations

On your first run, you'll see some warnings that are completely normal:

  • "WARNING: Failed to load from cache: No snapshots directory" - The service is checking for cached models (first-time setup)
  • "WARNING: Using TRANSFORMERS_CACHE is deprecated" - Informational warning, doesn't affect functionality
  • Model download in progress - The service automatically downloads a ~25MB embedding model (takes 1-2 minutes)

These warnings disappear after the first successful run. The service is working correctly! For details, see our First-Time Setup Guide.

πŸ“š Complete Documentation

πŸ‘‰ Visit our comprehensive Wiki for detailed guides:

πŸš€ Setup & Installation
🧠 Advanced Topics
πŸ”§ Help & Reference
✨ Key Features
🧠 Intelligent Memory Management
  • Semantic search with vector embeddings
  • Natural language time queries ("yesterday", "last week")
  • Tag-based organization with smart categorization
  • Memory consolidation with dream-inspired algorithms
πŸ”— Universal Compatibility
  • Claude Desktop - Native MCP integration
  • Claude Code - Memory-aware development with hooks
  • VS Code, Cursor, Continue - IDE extensions
  • 13+ AI applications - REST API compatibility
πŸ’Ύ Flexible Storage
  • SQLite-vec - Fast local storage (recommended)
  • ChromaDB - Multi-client collaboration
  • Cloudflare - Global edge distribution
  • Automatic backups and synchronization
πŸš€ Production Ready
  • Cross-platform - Windows, macOS, Linux
  • Service installation - Auto-start background operation
  • HTTPS/SSL - Secure connections
  • Docker support - Easy deployment
πŸ’‘ Basic Usage
# Store a memory
uv run memory store "Fixed race condition in authentication by adding mutex locks"

# Search for relevant memories  
uv run memory recall "authentication race condition"

# Search by tags
uv run memory search --tags python debugging

# Check system health
uv run memory health
πŸ”§ Configuration
Claude Desktop Integration

Add to your Claude Desktop config (~/.claude/config.json):

{
  "mcpServers": {
    "memory": {
      "command": "uv",
      "args": ["--directory", "/path/to/mcp-memory-service", "run", "memory", "server"],
      "env": {
        "MCP_MEMORY_STORAGE_BACKEND": "sqlite_vec"
      }
    }
  }
}
Environment Variables
# Storage backend (sqlite_vec recommended)
export MCP_MEMORY_STORAGE_BACKEND=sqlite_vec

# Enable HTTP API
export MCP_HTTP_ENABLED=true
export MCP_HTTP_PORT=8000

# Security  
export MCP_API_KEY="your-secure-key"
πŸ—οΈ Architecture
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   AI Clients    β”‚    β”‚  MCP Protocol   β”‚    β”‚ Storage Backend β”‚
β”‚                 β”‚    β”‚                 β”‚    β”‚                 β”‚
β”‚ β€’ Claude Desktop│◄──►│ β€’ Memory Store  │◄──►│ β€’ SQLite-vec    β”‚
β”‚ β€’ Claude Code   β”‚    β”‚ β€’ Semantic      β”‚    β”‚ β€’ ChromaDB      β”‚
β”‚ β€’ VS Code       β”‚    β”‚   Search        β”‚    β”‚ β€’ Cloudflare    β”‚
β”‚ β€’ Cursor        β”‚    β”‚ β€’ Tag System    β”‚    β”‚                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
πŸ› οΈ Development
Project Structure
mcp-memory-service/
β”œβ”€β”€ src/mcp_memory_service/    # Core application
β”‚   β”œβ”€β”€ models/                # Data models
β”‚   β”œβ”€β”€ storage/               # Storage backends
β”‚   β”œβ”€β”€ web/                   # HTTP API & dashboard
β”‚   └── server.py              # MCP server
β”œβ”€β”€ scripts/                   # Utilities & installation
β”œβ”€β”€ tests/                     # Test suite
└── tools/docker/              # Docker configuration
Contributing
  1. Fork the repository
  2. Create a feature branch
  3. Make your changes with tests
  4. Submit a pull request

See CONTRIBUTING.md for detailed guidelines.

πŸ†˜ Support
πŸ“Š In Production

Real-world metrics from active deployments:

  • 750+ memories stored and actively used
  • <500ms response time for semantic search
  • 65% token reduction in Claude Code sessions
  • 96.7% faster context setup (15min β†’ 30sec)
  • 100% knowledge retention across sessions
πŸ† Recognition
  • Smithery Verified MCP Server
  • Glama AI Featured AI Tool
  • Production-tested across 13+ AI applications
  • Community-driven with real-world feedback and improvements
πŸ“„ License

Apache License 2.0 - see LICENSE for details.


Ready to supercharge your AI workflow? πŸš€

πŸ‘‰ Start with our Installation Guide or explore the Wiki for comprehensive documentation.

Transform your AI conversations into persistent, searchable knowledge that grows with you.