reexpress_mcp_server

Reexpress Model-Context-Protocol (MCP) Server

GitHub Stars

4

User Rating

Not Rated

Favorites

0

Views

27

Forks

0

Issues

0

Installation
Difficulty
Intermediate
Estimated Time
10-20 minutes
Requirements
Python 3.8以上
pip 最新版
+1 more

Installation

Installation

Prerequisites

Python: 3.8 or higher
pip: Latest version
Claude: Sonnet 3.7, Sonnet 4, or Opus 4

Installation Steps

1. Clone Repository

bash
git clone https://github.com/ReexpressAI/reexpress_mcp_server.git
cd reexpress_mcp_server

2. Install Dependencies

bash
pip install -r requirements.txt

3. Start Server

bash
python server.py

Troubleshooting

Common Issues

Issue: Server won't start Solution: Check Python version and reinstall dependencies. Issue: Claude model not recognized Solution: Verify Claude configuration.

Configuration

Configuration

Basic Configuration

Claude Setup

Edit claude_config.json to add the MCP server:
json
{
  "mcpServers": {
    "reexpress-mcp": {
      "command": "python",
      "args": ["server.py"],
      "env": {
        "API_KEY": "your-api-key"
      }
    }
  }
}

Environment Variables

Set the following environment variables as needed:
bash
export API_KEY="your-api-key"
export DEBUG="true"

Configuration Example

Basic Configuration

json
{
  "mcpServers": {
    "reexpress-mcp": {
      "command": "python",
      "args": ["server.py"],
      "env": {
        "PORT": "3000"
      }
    }
  }
}

Examples

Examples

Basic Usage

Using with Claude

1Verify MCP Server Startup
Open Claude and confirm that the configuration has been loaded correctly.
2Execute Basic Commands

   Available tools from this MCP server:
   - ReexpressAddTrue: Tool to add as correct
   - ReexpressAddFalse: Tool to add as incorrect
   

Programmatic Usage

python

Python example

import requests def call_mcp_tool(tool_name, params): response = requests.post( 'http://localhost:3000/mcp/call', json={ 'tool': tool_name, 'parameters': params } ) return response.json()

Usage example

result = call_mcp_tool('ReexpressAddTrue', {'input': 'sample data'}) print(result)

Use Cases

Verifying the reliability of code generated in software development
Confirming data analysis results in data science projects
Enhancing the confidence of responses from AI chatbots
Improving the accuracy of information retrieval in specific domains

Additional Resources