minion-agent

A simple agent framework that's capable of browser use + mcp + auto instrument + plan + deep research + more

GitHubスター

315

ユーザー評価

未評価

お気に入り

0

閲覧数

4

フォーク

50

イシュー

2

README

Documentation Status
Install
Discord
Twitter Follow

Ask DeepWiki

Minion Agent

A simple agent framework that's capable of browser use + mcp + auto instrument + plan + deep research + more

🎬 Demo Videos
Installation
pip install minion-agent-x
Or from source
git clone git@github.com:femto/minion-agent.git
cd minion-agent
pip install -e .
Usage

Here's a simple example of how to use Minion Agent:

from smolagents import (
    AzureOpenAIServerModel,
)
from minion_agent import MinionAgent, AgentConfig, AgentFramework
from dotenv import load_dotenv
import os

load_dotenv()
async def main():
    # Configure the agent
    agent_config = AgentConfig(
        model_id=os.environ.get("AZURE_DEPLOYMENT_NAME"),
        name="research_assistant",
        description="A helpful research assistant",
        model_args={"azure_endpoint": os.environ.get("AZURE_OPENAI_ENDPOINT"),
                    "api_key": os.environ.get("AZURE_OPENAI_API_KEY"),
                    "api_version": os.environ.get("OPENAI_API_VERSION"),
                    },
        model_type=AzureOpenAIServerModel,  # use "AzureOpenAIServerModel" for auzre, use "OpenAIServerModel" for openai, use "LiteLLMModel" for litellm
    )

    agent = await MinionAgent.create(AgentFramework.SMOLAGENTS, agent_config)

    # Run the agent with a question
    result = agent.run("What are the latest developments in AI?")
    print("Agent's response:", result)
import asyncio
asyncio.run(main())

see example.py
see example_browser_use.py
see example_with_managed_agents.py
see example_deep_research.py
see example_reason.py

Configuration

The AgentConfig class accepts the following parameters:

  • model_id: The ID of the model to use (e.g., "gpt-4")
  • name: Name of the agent (default: "Minion")
  • description: Optional description of the agent
  • instructions: Optional system instructions for the agent
  • tools: List of tools the agent can use
  • model_type: model type of the underlying agent framework
  • model_args: Optional dictionary of model-specific arguments
  • agent_type: agent type of the underlying agent framework
  • agent_args: Optional dictionary of agent-specific arguments
MCP Tool Support

Minion Agent supports Model Context Protocol (MCP) tools. Here's how to use them:

Standard MCP Tool
from minion_agent.config import MCPTool

agent_config = AgentConfig(
    # ... other config options ...
    tools=[
        minion_agent.tools.browser_tool.browser,  # Regular tools
        MCPTool(
            command="npx",
            args=["-y", "@modelcontextprotocol/server-filesystem", "/path/to/workspace"]
        )  # MCP tool
    ]
)
SSE-based MCP Tool

You can also use MCP tools over Server-Sent Events (SSE). This is useful for connecting to remote MCP servers:

from minion_agent.config import MCPTool

agent_config = AgentConfig(
    # ... other config options ...
    tools=[
        MCPTool({"url": "http://localhost:8000/sse"}),  # SSE-based tool
    ]
)

⚠️ Security Warning: When using MCP servers over SSE, be extremely cautious and only connect to trusted and verified servers. Always verify the source and security of any MCP server before connecting.

You can also use multiple MCP tools together:

tools=[
    MCPTool(command="npx", args=["..."]),  # Standard MCP tool
    MCPTool({"url": "http://localhost:8000/sse"}),  # SSE-based tool
    MCPTool({"url": "http://localhost:8001/sse"})   # Another SSE-based tool
]
Planning Support in smolagents

You can enable automatic planning by setting the planning_interval in agent_args (smolagents) :

agent_config = AgentConfig(
    # ... other config options ...
    agent_args={
        "planning_interval": 3,  # Agent will create a plan every 3 steps
        "additional_authorized_imports": "*"
    }
)

The planning_interval parameter determines how often the agent should create a new plan. When set to 3, the agent will:

  1. Create an initial plan for the task
  2. Execute 3 steps according to the plan
  3. Re-evaluate and create a new plan based on progress
  4. Repeat until the task is complete
Environment Variables

Make sure to set up your environment variables in a .env file:

OPENAI_API_KEY=your_api_key_here
Development

To set up for development:

# Clone the repository
git clone https://github.com/yourusername/minion-agent.git
cd minion-agent

# Create a virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install development dependencies
pip install -e ".[dev]"
Deep Research

See Deep Research Documentation for usage instructions.

Community

Join our WeChat discussion group to connect with other users and get help:

WeChat Discussion Group

群聊: minion-agent讨论群

License

MIT License