ii-agent-mcp-universal

ii-agent-mcp-universalは、Pythonで開発された自動化エージェントです。このツールは、さまざまなタスクを効率的に処理するための機能を提供し、ユーザーが手動で行う作業を軽減します。特に、データ処理やAPIとの連携に優れています。

GitHubスター

0

ユーザー評価

未評価

お気に入り

0

閲覧数

12

フォーク

0

イシュー

0

README
II-Agent MCP Universal Connector

This repository contains the prototype for the Universal Dynamic Connector for II-Agent, which builds upon the MVP to create a fully dynamic tool using Crawl4AI for config discovery and local model support.

Long-Term Vision

The Universal Dynamic Connector aims to:

  1. Auto-discover API configs and rate limits using Crawl4AI
  2. Install and configure any local model (e.g., Mistral, LLaMA via Hugging Face)
  3. Dynamically adjust routing based on user-selected APIs and local models
  4. Add persistent memory ("Borg Memory") across providers and II-Agent tasks
  5. Include a WebUI for user configuration and monitoring
  6. Enable scalability (e.g., load balancing, Hetzner instance support)
  7. Package as a pip-installable module with extensible plugin architecture
Project Status

This repository is currently in the planning and prototype phase. The MVP implementation is available at ii-agent-mcp-mvp.

Planned Features
Crawl4AI Integration
  • Scrape API documentation to auto-detect endpoints, rate limits, and models
  • Generate provider configurations dynamically
  • Update configurations as APIs evolve
Local Model Support
  • Install and configure local models via Hugging Face
  • Optimize for different hardware configurations
  • Support for quantization and efficient inference
Dynamic Routing
  • Smart load balancing between cloud APIs and local models
  • Cost optimization strategies
  • Fallback based on availability, performance, and cost
Persistent Memory
  • Cross-provider memory persistence
  • Task context preservation across II-Agent sessions
  • Memory optimization and pruning strategies
WebUI
  • Configuration dashboard
  • Performance monitoring
  • Cost tracking and optimization suggestions
Development Timeline
  1. Phase 1: MVP (Complete) - Basic multi-provider support with fallback
  2. Phase 2: Crawl4AI Integration - Auto-discovery of API configurations
  3. Phase 3: Local Model Support - Integration with Hugging Face models
  4. Phase 4: Persistent Memory - Implementation of "Borg Memory"
  5. Phase 5: WebUI and Monitoring - User interface for configuration and monitoring
  6. Phase 6: Scalability - Support for distributed deployment and load balancing
Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

Open source under the MIT License.