arxiv-mcp

arxiv-mcpは、arXivからの論文データを取得し、APIを介してアクセスできるようにするツールです。ユーザーは簡単に論文情報を取得し、分析や研究に活用できます。データの取得は自動化されており、効率的なワークフローを実現します。

GitHubスター

1

ユーザー評価

未評価

お気に入り

0

閲覧数

25

フォーク

0

イシュー

6

README
arXiv MCP Server

Python
MCP Compatible
arXiv API
License
Code Quality
CI/CD
Docker

Access the world's largest repository of academic papers through the Model Context Protocol

A streamlined Model Context Protocol server that connects AI assistants to arXiv's vast collection of academic papers. Search, analyze, and download research papers directly from your AI workflow.

🚀 Quick Start
Prerequisites
  • Python 3.12+
  • uv package manager
Installation
Option 1: Docker (Recommended)
# Pull and run the Docker image
docker run --rm -it ghcr.io/tejas242/arxiv-mcp:latest

# Or using docker-compose
git clone https://github.com/tejas242/arxiv-mcp.git
cd arxiv-mcp
docker compose up
Option 2: Local Development
# Clone and setup
git clone https://github.com/tejas242/arxiv-mcp.git
cd arxiv-mcp
uv sync

# Test the server
uv run main.py
🛠️ Available Functions
Function Status Description Parameters
search_papers Working Search arXiv papers with flexible query syntax query, max_results, sort_by, sort_order
get_paper_details Working Retrieve complete metadata for any arXiv paper arxiv_id
build_advanced_query Working Construct complex search queries with multiple fields title_keywords, author_name, category, abstract_keywords
get_arxiv_categories Working List all available arXiv subject categories None
search_by_author ⚠️ Limited Find papers by specific author (use search_papers instead) author_name, max_results
search_by_category ⚠️ Limited Browse papers by category (use search_papers instead) category, max_results
download_paper_pdf 🔧 Needs Fix Download paper PDFs (redirect handling issue) arxiv_id, save_path
Function Details
✅ Fully Working Functions

search_papers - The primary search function

  • Supports full arXiv query syntax
  • Handles keywords, authors, categories, titles
  • Configurable sorting and pagination
  • Returns formatted results with abstracts and links

get_paper_details - Detailed paper information

  • Complete metadata extraction
  • Author information with affiliations
  • Category classifications and links
  • Publication dates and updates

build_advanced_query - Query construction helper

  • Combines multiple search criteria
  • Supports title, author, category, and abstract searches
  • Returns properly formatted query strings

get_arxiv_categories - Category reference

  • Complete list of arXiv subject categories
  • Descriptions for each category
  • Helpful for constructing targeted searches
⚠️ Limited Functions (Workarounds Available)

search_by_author - Use search_papers('au:"Author Name"') instead
search_by_category - Use search_papers('cat:category_code') instead

🔧 Functions Needing Fixes

download_paper_pdf - HTTP redirect handling needs improvement

  • Currently fails due to HTTPS/HTTP redirect issues
  • PDFs can be accessed directly via the links provided in search results
⚙️ Configuration
Claude Desktop Setup
Configuration Instructions

For Local Installation:

Add to your Claude Desktop config file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "arxiv-mcp": {
      "command": "uv",
      "args": [
        "--directory",
        "/absolute/path/to/arxiv-mcp",
        "run",
        "main.py"
      ]
    }
  }
}

For Docker Installation:

{
  "mcpServers": {
    "arxiv-mcp": {
      "command": "docker",
      "args": [
        "run",
        "--rm",
        "-i",
        "ghcr.io/tejas242/arxiv-mcp:latest"
      ]
    }
  }
}
VS Code MCP Extension
VS Code Configuration
{
  "mcp": {
    "servers": {
      "arxiv-mcp": {
        "command": "uv",
        "args": ["--directory", "/path/to/arxiv-mcp", "run", "main.py"]
      }
    }
  }
}
💡 Usage Examples
Core Search Operations
# Search for papers about transformers
search_papers("transformer architecture")

# Advanced query with specific fields
search_papers('ti:"attention mechanism" AND cat:cs.LG')

# Author-specific search (recommended approach)
search_papers('au:"Geoffrey Hinton"')

# Category browsing (recommended approach)
search_papers('cat:cs.AI')
Research Workflow
# 1. Find the famous "Attention" paper
search_papers('ti:"Attention Is All You Need"')
get_paper_details("1706.03762")

# 2. Explore related work
search_papers("transformer neural networks")

# 3. Build complex queries
query = build_advanced_query(
    title_keywords="few-shot learning",
    author_name="Tom Brown",
    category="cs.LG"
)
search_papers(query)
📊 arXiv Categories Reference
Popular Categories
Code Description Example Topics
cs.AI Artificial Intelligence Machine learning, neural networks, AI theory
cs.LG Machine Learning Deep learning, reinforcement learning, statistical learning
cs.CV Computer Vision Image processing, object detection, visual recognition
cs.CL Computation and Language NLP, language models, text processing
cs.CR Cryptography and Security Security protocols, encryption, privacy
stat.ML Machine Learning (Statistics) Statistical learning theory, Bayesian methods
physics.gen-ph General Physics Theoretical physics, quantum mechanics
math.NA Numerical Analysis Computational mathematics, algorithms
q-bio.NC Quantitative Biology Neuroscience, computational biology

Use get_arxiv_categories() for the complete list of available categories.

🧪 Testing Results

Based on comprehensive testing of all functions:

Working Functions
Limited Functions
Needs Fix

✅ Reliable Functions
  • Paper search with keywords, authors, categories: 100% success rate
  • Paper detail retrieval: Complete metadata extraction working
  • Query construction: All syntax combinations supported
  • Category listing: All arXiv categories accessible
⚠️ Alternative Approaches Recommended
  • Author search: Use search_papers('au:"Author Name"') instead of search_by_author()
  • Category browsing: Use search_papers('cat:category') instead of search_by_category()
🔧 Known Issues
  • PDF downloads: Redirect handling needs improvement (PDFs accessible via direct links)
🔧 Development
Project Structure
arxiv-mcp/
├── src/arxiv_mcp/          # Main package
│   ├── server.py           # MCP server implementation
│   ├── arxiv_client.py     # arXiv API wrapper
│   ├── models.py           # Pydantic data models
│   └── utils.py            # Helper functions
├── tests/                  # Test suite
├── main.py                 # Entry point
└── pyproject.toml         # Project config
Running Tests
uv run pytest tests/ -v
Debug Mode
# Enable detailed logging
PYTHONPATH=src uv run python -c "
import logging
logging.basicConfig(level=logging.DEBUG)
from arxiv_mcp.server import main
main()
"
⚠️ Troubleshooting
Common Issues & Solutions
Server Not Detected
  • ✅ Verify absolute paths in MCP config
  • ✅ Test server runs: uv run main.py
  • ✅ Restart Claude Desktop after config changes
Search Issues
  • ✅ Use arXiv query syntax (see examples above)
  • ✅ Check category names: get_arxiv_categories()
  • ✅ Try broader search terms
  • ✅ Use search_papers() instead of specific search functions
PDF Download Failures
  • ✅ Access PDFs via links in search results
  • ✅ Check internet connection
  • ✅ Verify arXiv ID format (e.g., "1706.03762")
🙏 Acknowledgments

GitHub
Issues
Contribute



Made with ⚡ by screenager