PATHSolver.jl

PATHSolver.jlは、Juliaプログラミング言語で開発されたパスソルバーライブラリです。最適化問題や経路探索に特化しており、ユーザーが複雑な問題を効率的に解決できるように設計されています。直感的なAPIと強力なアルゴリズムを提供し、研究者や開発者にとって非常に有用なツールです。

GitHubスター

56

ユーザー評価

未評価

お気に入り

0

閲覧数

25

フォーク

15

イシュー

1

README
PATHSolver.jl

Build Status
codecov

PATHSolver.jl is a wrapper for the
PATH solver.

The wrapper has two components:

You can solve any complementarity problem using the wrapper around the C API,
although you must manually provide the callback functions, including the
Jacobian.

The MathOptInterface wrapper is more limited, supporting only linear
complementarity problems, but it enables PATHSolver to be used with JuMP.

Affiliation

This wrapper is maintained by the JuMP community and is not an official wrapper
of PATH. However, we are in close contact with the PATH developers, and they
have given us permission to re-distribute the PATH binaries for automatic
installation.

License

PATHSolver.jl is licensed under the MIT License.

The underlying solver, path is
closed source and requires a license.

Without a license, the PATH Solver can solve problem instances up to with up
to 300 variables and 2000 non-zeros. For larger problems,
this web page provides a
temporary license that is valid for a year.

You can either store the license in the PATH_LICENSE_STRING environment
variable, or you can use the PATHSolver.c_api_License_SetString function
immediately after importing the PATHSolver package:

import PATHSolver
PATHSolver.c_api_License_SetString("<LICENSE STRING>")

where <LICENSE STRING> is replaced by the current license string.

Installation

Install PATHSolver.jl as follows:

import Pkg
Pkg.add("PATHSolver")

By default, PATHSolver.jl will download a copy of the underlying PATH solver.
To use a different version of PATH, see the Manual Installation section below.

Use with JuMP
julia> using JuMP, PATHSolver

julia> M = [
           0  0 -1 -1
           0  0  1 -2
           1 -1  2 -2
           1  2 -2  4
       ]
4×4 Array{Int64,2}:
 0   0  -1  -1
 0   0   1  -2
 1  -1   2  -2
 1   2  -2   4

julia> q = [2, 2, -2, -6]
4-element Array{Int64,1}:
  2
  2
 -2
 -6

julia> model = Model(PATHSolver.Optimizer)
A JuMP Model
Feasibility problem with:
Variables: 0
Model mode: AUTOMATIC
CachingOptimizer state: EMPTY_OPTIMIZER
Solver name: Path 5.0.00

julia> set_optimizer_attribute(model, "output", "no")

julia> @variable(model, x[1:4] >= 0)
4-element Array{VariableRef,1}:
 x[1]
 x[2]
 x[3]
 x[4]

julia> @constraint(model, M * x .+ q ⟂ x)
[-x[3] - x[4] + 2, x[3] - 2 x[4] + 2, x[1] - x[2] + 2 x[3] - 2 x[4] - 2, x[1] + 2 x[2] - 2 x[3] + 4 x[4] - 6, x[1], x[2], x[3], x[4]] ∈ MOI.Complements(4)

julia> optimize!(model)
Reading options file /var/folders/bg/dzq_hhvx1dxgy6gb5510pxj80000gn/T/tmpiSsCRO
Read of options file complete.

Path 5.0.00 (Mon Aug 19 10:57:18 2019)
Written by Todd Munson, Steven Dirkse, Youngdae Kim, and Michael Ferris

julia> value.(x)
4-element Array{Float64,1}:
 2.8
 0.0
 0.7999999999999998
 1.2

julia> termination_status(model)
LOCALLY_SOLVED::TerminationStatusCode = 4

Note that options are set using JuMP.set_optimizer_attribute.

The list of options supported by PATH can be found here: https://pages.cs.wisc.edu/~ferris/path/options.pdf

MathOptInterface API

The Path 5.0.03 optimizer supports the following constraints and attributes.

List of supported variable types:

List of supported constraint types:

List of supported model attributes:

Use with the C API

PATHSolver.jl wraps the PATH C API using PATHSolver.c_api_XXX for the C
method XXX. However, using the C API directly from Julia can be challenging,
particularly with respect to avoiding issues with Julia's garbage collector.

Instead, we recommend that you use the PATHSolver.solve_mcp function, which
wrappers the C API into a single call. See the docstring of PATHSolver.solve_mcp
for a detailed description of the arguments.

Here is the same example using PATHSolver.solve_mcp. Note that you must
manually construct the sparse Jacobian callback.

julia> import PATHSolver

julia> M = [
           0  0 -1 -1
           0  0  1 -2
           1 -1  2 -2
           1  2 -2  4
       ]
4×4 Matrix{Int64}:
 0   0  -1  -1
 0   0   1  -2
 1  -1   2  -2
 1   2  -2   4

julia> q = [2, 2, -2, -6]
4-element Vector{Int64}:
  2
  2
 -2
 -6

julia> function F(n::Cint, x::Vector{Cdouble}, f::Vector{Cdouble})
           @assert n == length(x) == length(f)
           f .= M * x .+ q
           return Cint(0)
       end
F (generic function with 1 method)

julia> function J(
           n::Cint,
           nnz::Cint,
           x::Vector{Cdouble},
           col::Vector{Cint},
           len::Vector{Cint},
           row::Vector{Cint},
           data::Vector{Cdouble},
       )
           @assert n == length(x) == length(col) == length(len) == 4
           @assert nnz == length(row) == length(data)
           i = 1
           for c in 1:n
               col[c], len[c] = i, 0
               for r in 1:n
                   if !iszero(M[r, c])
                       row[i], data[i] = r, M[r, c]
                       len[c] += 1
                       i += 1
                   end
               end
           end
           return Cint(0)
       end
J (generic function with 1 method)

julia> status, z, info = PATHSolver.solve_mcp(
           F,
           J,
           fill(0.0, 4),  # Lower bounds
           fill(Inf, 4),  # Upper bounds
           fill(0.0, 4);  # Starting point
           nnz = 12,      # Number of nonzeros in the Jacobian
           output = "yes",
       )
Reading options file /var/folders/bg/dzq_hhvx1dxgy6gb5510pxj80000gn/T/jl_iftYBS
 > output yes
Read of options file complete.

Path 5.0.03 (Fri Jun 26 09:58:07 2020)
Written by Todd Munson, Steven Dirkse, Youngdae Kim, and Michael Ferris

Crash Log
major  func  diff  size  residual    step       prox   (label)
    0     0             1.2649e+01             0.0e+00 (f[    4])
    1     2     4     2 1.0535e+01  8.0e-01    0.0e+00 (f[    1])
    2     3     2     4 8.4815e-01  1.0e+00    0.0e+00 (f[    4])
    3     4     0     3 4.4409e-16  1.0e+00    0.0e+00 (f[    3])
pn_search terminated: no basis change.

Major Iteration Log
major minor  func  grad  residual    step  type prox    inorm  (label)
    0     0     5     4 4.4409e-16           I 0.0e+00 4.4e-16 (f[    3])

Major Iterations. . . . 0
Minor Iterations. . . . 0
Restarts. . . . . . . . 0
Crash Iterations. . . . 3
Gradient Steps. . . . . 0
Function Evaluations. . 5
Gradient Evaluations. . 4
Basis Time. . . . . . . 0.000016
Total Time. . . . . . . 0.044383
Residual. . . . . . . . 4.440892e-16
(PATHSolver.MCP_Solved, [2.8, 0.0, 0.8, 1.2], PATHSolver.Information(4.4408920985006247e-16, 0.0, 0.0, 0.044383, 1.6e-5, 0.0, 0, 0, 3, 5, 4, 0, 0, 0, 0, false, false, false, true, false, false, false))

julia> status
MCP_Solved::MCP_Termination = 1

julia> z
4-element Vector{Float64}:
 2.8
 0.0
 0.8
 1.2
Thread safety

PATH is not thread-safe and there are no known work-arounds. Do not run it in
parallel using Threads.@threads. See
issue #62 for more details.

Factorization methods

By default, PATHSolver.jl will download the LUSOL
shared library. To use LUSOL, set the following options:

model = Model(PATHSolver.Optimizer)
set_optimizer_attribute(model, "factorization_method", "blu_lusol")
set_optimizer_attribute(model, "factorization_library_name", PATHSolver.LUSOL_LIBRARY_PATH)

To use factorization_method umfpack you will need the umfpack shared library that
is available directly from the developers of that code for academic use.

Manual installation

By default PATHSolver.jl will download a copy of the libpath library. If you
already have one installed and want to use that, set the PATH_JL_LOCATION
environment variable to point to the libpath50.xx library.

作者情報
Changhyun Kwon

Associate Professor at KAIST / computational optimization / transportation / game theory / author of Julia Programming for Operations Research

KAISTDaejeon, Republic of Korea

301

フォロワー

121

リポジトリ

0

Gist

0

貢献数