aie-mcp
This project hosts the AI Engineer Conference 2025 talk submission system and MCP server. Built using Cloudflare, it is designed for developers to easily test and run locally.
GitHub Stars
55
User Rating
Not Rated
Favorites
0
Views
28
Forks
4
Issues
0
Installation
Difficulty
IntermediateEstimated Time
10-20 minutes
Requirements
Node.js 18.0.0以上npm 8.0.0以上+1 more
Installation
Installation
Prerequisites
Please specify required software and versions:Node.js: 18.0.0 or higher
npm: 8.0.0 or higher
Claude Desktop: Latest version
Installation Steps
1. Clone Repository
bash
git clone git@github.com:aiDotEngineer/aie-mcp.git
cd aie-mcp
2. Install Dependencies
bash
npm install
3. Start Server
bash
npx wrangler dev
4. Verify in Browser
Accesshttp://localhost:8787/ to confirm that the server is running correctly.
Troubleshooting
Common Issues
Issue: Server won't start Solution: Check Node.js version and reinstall dependencies. Issue: Not recognized by Claude Desktop Solution: Verify configuration file path and syntax.Configuration
Configuration
Basic Configuration
Claude Desktop Setup
Edit~/.config/claude-desktop/claude_desktop_config.json (macOS/Linux) or
%APPDATA%\Claude\claude_desktop_config.json (Windows):
json
{
"mcpServers": {
"AIECONF": {
"url": "https://ai-engineer-wf-2025.swyx-5de.workers.dev/sse"
}
}
}
Advanced Configuration
Security Settings
Store API keys in environment variables or secure configuration files
Set appropriate file access permissions
Adjust logging levels
Performance Tuning
Configure timeout values
Limit concurrent executions
Set up caching
Configuration Example
Basic Configuration
json
{
"mcpServers": {
"example-mcp": {
"command": "node",
"args": ["server.js"],
"env": {
"PORT": "3000",
"LOG_LEVEL": "info"
}
}
}
}
Examples
Examples
Basic Usage
Here are basic usage examples for the MCP server:Programmatic Usage
javascript
// JavaScript example (Node.js)
const { MCPClient } = require('@modelcontextprotocol/client');
const client = new MCPClient();
await client.connect();
// Execute tool
const result = await client.callTool('toolName', {
parameter1: 'value1',
parameter2: 'value2'
});
console.log(result);
Advanced Examples
Automation Script
bash
#!/bin/bash
Batch processing example
for file in *.txt; do
mcp-tool process "$file"
done
API Integration
python
Python example
import requests
import json
def call_mcp_tool(tool_name, params):
response = requests.post(
'http://localhost:3000/mcp/call',
json={
'tool': tool_name,
'parameters': params
}
)
return response.json()
Usage example
result = call_mcp_tool('analyze', {
'input': 'sample data',
'options': {'format': 'json'}
})
Use Cases
Used as a system for AI engineers to submit talks for the conference
Testing API endpoints using the MCP Inspector
Connecting to the MCP server through Claude Desktop to utilize tools
Developing and debugging the MCP server in a local environment