LMStudio-MCP

A Model Control Protocol (MCP) server that allows Claude to communicate with locally running LLM models via LM Studio.

GitHub Stars

110

User Rating

Not Rated

Favorites

0

Views

2

Forks

15

Issues

0

README
LMStudio-MCP

A Model Control Protocol (MCP) server that allows Claude to communicate with locally running LLM models via LM Studio.

Screenshot 2025-03-22 at 16 50 53
Overview

LMStudio-MCP creates a bridge between Claude (with MCP capabilities) and your locally running LM Studio instance. This allows Claude to:

  • Check the health of your LM Studio API
  • List available models
  • Get the currently loaded model
  • Generate completions using your local models

This enables you to leverage your own locally running models through Claude's interface, combining Claude's capabilities with your private models.

Prerequisites
  • Python 3.7+
  • LM Studio installed and running locally with a model loaded
  • Claude with MCP access
  • Required Python packages (see Installation)
🚀 Quick Installation
One-Line Install (Recommended)
curl -fsSL https://raw.githubusercontent.com/infinitimeless/LMStudio-MCP/main/install.sh | bash
Manual Installation Methods
1. Local Python Installation
git clone https://github.com/infinitimeless/LMStudio-MCP.git
cd LMStudio-MCP
pip install requests "mcp[cli]" openai
2. Docker Installation
# Using pre-built image
docker run -it --network host ghcr.io/infinitimeless/lmstudio-mcp:latest

# Or build locally
git clone https://github.com/infinitimeless/LMStudio-MCP.git
cd LMStudio-MCP
docker build -t lmstudio-mcp .
docker run -it --network host lmstudio-mcp
3. Docker Compose
git clone https://github.com/infinitimeless/LMStudio-MCP.git
cd LMStudio-MCP
docker-compose up -d

For detailed deployment instructions, see DOCKER.md.

MCP Configuration
Quick Setup

Using GitHub directly (simplest):

{
  "lmstudio-mcp": {
    "command": "uvx",
    "args": [
      "https://github.com/infinitimeless/LMStudio-MCP"
    ]
  }
}

Using local installation:

{
  "lmstudio-mcp": {
    "command": "/bin/bash",
    "args": [
      "-c",
      "cd /path/to/LMStudio-MCP && source venv/bin/activate && python lmstudio_bridge.py"
    ]
  }
}

Using Docker:

{
  "lmstudio-mcp-docker": {
    "command": "docker",
    "args": [
      "run",
      "-i",
      "--rm",
      "--network=host",
      "ghcr.io/infinitimeless/lmstudio-mcp:latest"
    ]
  }
}

For complete MCP configuration instructions, see MCP_CONFIGURATION.md.

Usage
  1. Start LM Studio and ensure it's running on port 1234 (the default)
  2. Load a model in LM Studio
  3. Configure Claude MCP with one of the configurations above
  4. Connect to the MCP server in Claude when prompted
Available Functions

The bridge provides the following functions:

  • health_check(): Verify if LM Studio API is accessible
  • list_models(): Get a list of all available models in LM Studio
  • get_current_model(): Identify which model is currently loaded
  • chat_completion(prompt, system_prompt, temperature, max_tokens): Generate text from your local model
Deployment Options

This project supports multiple deployment methods:

Method Use Case Pros Cons
Local Python Development, simple setup Fast, direct control Requires Python setup
Docker Isolated environments Clean, portable Requires Docker
Docker Compose Production deployments Easy management More complex setup
Kubernetes Enterprise/scale Highly scalable Complex configuration
GitHub Direct Zero setup No local install needed Requires internet
Known Limitations
  • Some models (e.g., phi-3.5-mini-instruct_uncensored) may have compatibility issues
  • The bridge currently uses only the OpenAI-compatible API endpoints of LM Studio
  • Model responses will be limited by the capabilities of your locally loaded model
Troubleshooting
API Connection Issues

If Claude reports 404 errors when trying to connect to LM Studio:

  • Ensure LM Studio is running and has a model loaded
  • Check that LM Studio's server is running on port 1234
  • Verify your firewall isn't blocking the connection
  • Try using "127.0.0.1" instead of "localhost" in the API URL if issues persist
Model Compatibility

If certain models don't work correctly:

  • Some models might not fully support the OpenAI chat completions API format
  • Try different parameter values (temperature, max_tokens) for problematic models
  • Consider switching to a more compatible model if problems persist

For detailed troubleshooting help, see TROUBLESHOOTING.md.

🐳 Docker & Containerization

This project includes comprehensive Docker support:

  • Multi-architecture images (AMD64, ARM64/Apple Silicon)
  • Automated builds via GitHub Actions
  • Pre-built images available on GitHub Container Registry
  • Docker Compose for easy deployment
  • Kubernetes manifests for production deployments

See DOCKER.md for complete containerization documentation.

Contributing

Contributions are welcome! Please see CONTRIBUTING.md for guidelines.

License

MIT

Acknowledgements

This project was originally developed as "Claude-LMStudio-Bridge_V2" and has been renamed and open-sourced as "LMStudio-MCP".


🌟 If this project helps you, please consider giving it a star!