wecom-bot-mcp-server

wecom-bot-mcp-serverは、WeCom(企業微信)向けのボットを構築するためのPythonライブラリです。このライブラリを使用することで、企業内のコミュニケーションを自動化し、効率的なワークフローを実現できます。特に、APIを介してメッセージの送受信や、特定のイベントに応じたアクションをトリガーする機能が強化されています。

GitHubスター

53

ユーザー評価

未評価

お気に入り

0

閲覧数

20

フォーク

10

イシュー

6

README

MseeP.ai Security Assessment Badge

WeCom Bot MCP Server
WeCom Bot Logo

A Model Context Protocol (MCP) compliant server implementation for WeCom (WeChat Work) bot.

PyPI version
Python Version
codecov
Code style: ruff
smithery badge

English | 中文

WeCom Bot Server MCP server

Features
  • Support for multiple message types:
    • Text messages
    • Markdown messages
    • Image messages (base64)
    • File messages
  • @mention support (via user ID or phone number)
  • Message history tracking
  • Configurable logging system
  • Full type annotations
  • Pydantic-based data validation
Requirements
  • Python 3.10+
  • WeCom Bot Webhook URL (obtained from WeCom group settings)
Installation

There are several ways to install WeCom Bot MCP Server:

1. Automated Installation (Recommended)
Using Smithery (For Claude Desktop):
npx -y @smithery/cli install wecom-bot-mcp-server --client claude
Using VSCode with Cline Extension:
  1. Install Cline Extension from VSCode marketplace
  2. Open Command Palette (Ctrl+Shift+P / Cmd+Shift+P)
  3. Search for "Cline: Install Package"
  4. Type "wecom-bot-mcp-server" and press Enter
2. Manual Installation
Install from PyPI:
pip install wecom-bot-mcp-server
Configure MCP manually:

Create or update your MCP configuration file:

// For Windsurf: ~/.windsurf/config.json
{
  "mcpServers": {
    "wecom": {
      "command": "uvx",
      "args": [
        "wecom-bot-mcp-server"
      ],
      "env": {
        "WECOM_WEBHOOK_URL": "your-webhook-url"
      }
    }
  }
}
Configuration
Setting Environment Variables
# Windows PowerShell
$env:WECOM_WEBHOOK_URL = "your-webhook-url"

# Optional configurations
$env:MCP_LOG_LEVEL = "DEBUG"  # Log levels: DEBUG, INFO, WARNING, ERROR, CRITICAL
$env:MCP_LOG_FILE = "path/to/custom/log/file.log"  # Custom log file path
Log Management

The logging system uses platformdirs.user_log_dir() for cross-platform log file management:

  • Windows: C:\Users\<username>\AppData\Local\hal\wecom-bot-mcp-server
  • Linux: ~/.local/share/hal/wecom-bot-mcp-server
  • macOS: ~/Library/Application Support/hal/wecom-bot-mcp-server

The log file is named mcp_wecom.log and is stored in the above directory.

Usage
Starting the Server
wecom-bot-mcp-server
Usage Examples (With MCP)
# Scenario 1: Send weather information to WeCom
USER: "How's the weather in Shenzhen today? Send it to WeCom"
ASSISTANT: "I'll check Shenzhen's weather and send it to WeCom"

await mcp.send_message(
    content="Shenzhen Weather:\n- Temperature: 25°C\n- Weather: Sunny\n- Air Quality: Good",
    msg_type="markdown"
)

# Scenario 2: Send meeting reminder and @mention relevant people
USER: "Send a reminder for the 3 PM project review meeting, remind Zhang San and Li Si to attend"
ASSISTANT: "I'll send the meeting reminder"

await mcp.send_message(
    content="## Project Review Meeting Reminder\n\nTime: Today 3:00 PM\nLocation: Meeting Room A\n\nPlease be on time!",
    msg_type="markdown",
    mentioned_list=["zhangsan", "lisi"]
)

# Scenario 3: Send a file
USER: "Send this weekly report to the WeCom group"
ASSISTANT: "I'll send the weekly report"

await mcp.send_message(
    content=Path("weekly_report.docx"),
    msg_type="file"
)
Direct API Usage
Send Messages
from wecom_bot_mcp_server import mcp

# Send markdown message
await mcp.send_message(
    content="**Hello World!**", 
    msg_type="markdown"
)

# Send text message and mention users
await mcp.send_message(
    content="Hello @user1 @user2",
    msg_type="text",
    mentioned_list=["user1", "user2"]
)
Send Files
from wecom_bot_mcp_server import send_wecom_file

# Send file
await send_wecom_file("/path/to/file.txt")
Send Images
from wecom_bot_mcp_server import send_wecom_image

# Send local image
await send_wecom_image("/path/to/image.png")

# Send URL image
await send_wecom_image("https://example.com/image.png")
Development
Setup Development Environment
  1. Clone the repository:
git clone https://github.com/loonghao/wecom-bot-mcp-server.git
cd wecom-bot-mcp-server
  1. Create a virtual environment and install dependencies:
# Using uv (recommended)
pip install uv
uv venv
uv pip install -e ".[dev]"

# Or using traditional method
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
pip install -e ".[dev]"
Testing
# Using uv (recommended)
uvx nox -s pytest

# Or using traditional method
nox -s pytest
Code Style
# Check code
uvx nox -s lint

# Automatically fix code style issues
uvx nox -s lint_fix
Building and Publishing
# Build the package
uv build

# Build and publish to PyPI
uv build && twine upload dist/*
Project Structure
wecom-bot-mcp-server/
├── src/
│   └── wecom_bot_mcp_server/
│       ├── __init__.py
│       ├── server.py
│       ├── message.py
│       ├── file.py
│       ├── image.py
│       ├── utils.py
│       └── errors.py
├── tests/
│   ├── test_server.py
│   ├── test_message.py
│   ├── test_file.py
│   └── test_image.py
├── docs/
├── pyproject.toml
├── noxfile.py
└── README.md
License

This project is licensed under the MIT License - see the LICENSE file for details.

Contact