wisdomforge

WisdomForgeは、経験、洞察、ベストプラクティスから知識を生成する強力な知識管理システムです。Qdrantベクターデータベースを使用して、効率的な知識の保存と取得を実現しています。複数の知識タイプをサポートし、環境変数を通じてデータベースの選択が可能です。

GitHubスター

5

ユーザー評価

未評価

お気に入り

0

閲覧数

7

フォーク

2

イシュー

0

README
WisdomForge

A powerful knowledge management system that forges wisdom from experiences, insights, and best practices. Built with Qdrant vector database for efficient knowledge storage and retrieval.

Features
  • Intelligent knowledge management and retrieval
  • Support for multiple knowledge types (best practices, lessons learned, insights, experiences)
  • Configurable database selection via environment variables
  • Uses Qdrant's built-in FastEmbed for efficient embedding generation
  • Domain knowledge storage and retrieval
  • Deployable to Smithery.ai platform
Prerequisites
  • Node.js 20.x or later (LTS recommended)
  • npm 10.x or later
  • Qdrant or Chroma vector database
Installation
  1. Clone the repository:
git clone https://github.com/hadv/wisdomforge
cd wisdomforge
  1. Install dependencies:
npm install
  1. Create a .env file in the root directory based on the .env.example template:
cp .env.example .env
  1. Configure your environment variables in the .env file:
Required Environment Variables
Database Configuration
  • DATABASE_TYPE: Choose your vector database (qdrant or chroma)
  • COLLECTION_NAME: Name of your vector collection
  • QDRANT_URL: URL of your Qdrant instance (required if using Qdrant)
  • QDRANT_API_KEY: API key for Qdrant (required if using Qdrant)
  • CHROMA_URL: URL of your Chroma instance (required if using Chroma)
Server Configuration
  • HTTP_SERVER: Set to true to enable HTTP server mode
  • PORT: Port number for local development only (default: 3000). Not used in Smithery cloud deployment.

Example .env configuration for Qdrant:

DATABASE_TYPE=qdrant
COLLECTION_NAME=wisdom_collection
QDRANT_URL=https://your-qdrant-instance.example.com:6333
QDRANT_API_KEY=your_api_key
HTTP_SERVER=true
PORT=3000  # Only needed for local development
  1. Build the project:
npm run build
AI IDE Integration
Cursor AI IDE

Add this configuration to your ~/.cursor/mcp.json or .cursor/mcp.json file:

{
  "mcpServers": { 
    "wisdomforge": {
      "command": "/bin/zsh",
      "args": [
        "/path/to/wisdomforge/run-wisdomforge-mcp.sh"
      ]
    }
  }
}

Replace the following placeholders in the configuration:

  • YOUR_API_KEY: Your Smithery API key
  • YOUR_COLLECTION_NAME: Your Qdrant collection name
  • YOUR_QDRANT_URL: Your Qdrant instance URL
  • YOUR_QDRANT_API_KEY: Your Qdrant API key

Note: Make sure you have Node.js installed and npx available in your PATH. If you're using nvm, ensure you're using the correct Node.js version by running nvm use --lts before starting Cursor.

Claude Desktop

Add this configuration in Claude's settings:

{
  "processes": {
    "knowledge_server": {
      "command": "/path/to/your/project/run-mcp.sh",
      "args": []
    }
  },
  "tools": [
    {
      "name": "store_knowledge",
      "description": "Store domain-specific knowledge in a vector database",
      "provider": "process",
      "process": "knowledge_server"
    },
    {
      "name": "retrieve_knowledge_context",
      "description": "Retrieve relevant domain knowledge from a vector database",
      "provider": "process",
      "process": "knowledge_server"
    }
  ]
}