mcp-local-rag
"primitive" RAG-like web search model context protocol (MCP) server that runs locally. ✨ no APIs ✨
GitHub Stars
76
User Rating
Not Rated
Favorites
0
Views
20
Forks
15
Issues
3
mcp-local-rag
"primitive" RAG-like web search model context protocol (MCP) server that runs locally. ✨ no APIs ✨
%%{init: {'theme': 'base'}}%%
flowchart TD
A[User] -->|1.Submits LLM Query| B[Language Model]
B -->|2.Sends Query| C[mcp-local-rag Tool]
subgraph mcp-local-rag Processing
C -->|Search DuckDuckGo| D[Fetch 10 search results]
D -->|Fetch Embeddings| E[Embeddings from Google's MediaPipe Text Embedder]
E -->|Compute Similarity| F[Rank Entries Against Query]
F -->|Select top k results| G[Context Extraction from URL]
end
G -->|Returns Markdown from HTML content| B
B -->|3.Generated response with context| H[Final LLM Output]
H -->|5.Present result to user| A
classDef default stroke:#333,stroke-width:2px;
classDef process stroke:#333,stroke-width:2px;
classDef input stroke:#333,stroke-width:2px;
classDef output stroke:#333,stroke-width:2px;
class A input;
class B,C process;
class G output;
Installation
Locate your MCP config path here or check your MCP client settings.
Run Directly via uvx
This is the easiest and quickest method. You need to install uv for this to work.
Add this to your MCP server configuration:
{
"mcpServers": {
"mcp-local-rag":{
"command": "uvx",
"args": [
"--python=3.10",
"--from",
"git+https://github.com/nkapila6/mcp-local-rag",
"mcp-local-rag"
]
}
}
}
Using Docker (recommended)
Ensure you have Docker installed.
Add this to your MCP server configuration:
{
"mcpServers": {
"mcp-local-rag": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"--init",
"-e",
"DOCKER_CONTAINER=true",
"ghcr.io/nkapila6/mcp-local-rag:latest"
]
}
}
}
Security audits
MseeP does security audits on every MCP server, you can see the security audit of this MCP server by clicking here.
MCP Clients
The MCP server should work with any MCP client that supports tool calling. Has been tested on the below clients.
- Claude Desktop
- Cursor
- Goose
- Others? You try!
Examples on Claude Desktop
When an LLM (like Claude) is asked a question requiring recent web information, it will trigger mcp-local-rag.
When asked to fetch/lookup/search the web, the model prompts you to use MCP server for the chat.
In the example, have asked it about Google's latest Gemma models released yesterday. This is new info that Claude is not aware about.
Result
mcp-local-rag performs a live web search, extracts context, and sends it back to the model—giving it fresh knowledge:
Contributing
Have ideas or want to improve this project? Issues and pull requests are welcome!
License
This project is licensed under the MIT License.
Backpropating daily in MS@CS at @gatech | open source contributor
25
Followers
51
Repositories
2
Gists
0
Total Contributions
The mcp-client-for-ollama is a simple yet powerful Python client designed for interacting with Model Context Protocol (MCP) servers using Ollama. This client enables local large language models (LLMs) to utilize tools effectively. It primarily facilitates communication with APIs, streamlining workflows and enhancing the capabilities of LLMs.
The Prospectio MCP API is a FastAPI-based application designed for lead prospecting, implementing the Model Context Protocol (MCP). It adheres to Clean Architecture principles, ensuring a clear separation of concerns across domain, application, and infrastructure layers. The project focuses on core business entities and logic, along with use cases and API routes, facilitating integration with external services.

