cline-mcp-memory-bank

Cline Memory Bank is an MCP server designed to provide project context management for AI-assisted development. It helps maintain consistent project context across development sessions by offering structured tools for managing technical details, session states, progress tracking, and decision rationales.

GitHub Stars

55

User Rating

Not Rated

Favorites

0

Views

36

Forks

15

Issues

0

Installation
Difficulty
Intermediate
Estimated Time
10-20 minutes
Requirements
Node.js: 18.0.0以上
npm: 8.0.0以上
+1 more

Installation

Installation

Prerequisites

Please specify required software and versions:
Node.js: 18.0.0 or higher
npm: 8.0.0 or higher
Claude Desktop: Latest version

Installation Steps

1. Clone Repository

bash
git clone https://github.com/dazeb/cline-mcp-memory-bank
cd cline-mcp-memory-bank

2. Install Dependencies

bash
npm install

3. Configure Claude Desktop

Edit claude_desktop_config.json to add the MCP server:
json
{
  "mcpServers": {
    "cline-memory-bank": {
      "command": "node",
      "args": ["path/to/server.js"]
    }
  }
}

4. Start Server

bash
npm start

Troubleshooting

Common Issues

Issue: Server won't start Solution: Check Node.js version and reinstall dependencies. Issue: Not recognized by Claude Desktop Solution: Verify configuration file path and syntax.

Configuration

Configuration

Basic Configuration

Claude Desktop Setup

Edit ~/.config/claude-desktop/claude_desktop_config.json (macOS/Linux) or %APPDATA%\Claude\claude_desktop_config.json (Windows):
json
{
  "mcpServers": {
    "cline-memory-bank": {
      "command": "node",
      "args": ["server.js"],
      "env": {
        "API_KEY": "your-api-key"
      }
    }
  }
}

Environment Variables

Set the following environment variables as needed:
bash
export API_KEY="your-api-key"
export DEBUG="true"

Advanced Configuration

Security Settings

Store API keys in environment variables or secure configuration files
Set appropriate file access permissions
Adjust logging levels

Performance Tuning

Configure timeout values
Limit concurrent executions
Set up caching

Configuration Examples

Basic Configuration

json
{
  "mcpServers": {
    "cline-memory-bank": {
      "command": "node",
      "args": ["server.js"],
      "env": {
        "PORT": "3000",
        "LOG_LEVEL": "info"
      }
    }
  }
}

Advanced Configuration

json
{
  "mcpServers": {
    "advanced-mcp": {
      "command": "python",
      "args": ["-m", "server"],
      "cwd": "/path/to/server",
      "env": {
        "PYTHONPATH": "/path/to/modules",
        "CONFIG_FILE": "/path/to/config.json"
      }
    }
  }
}

Examples

Examples

Basic Usage

Here are basic usage examples for the MCP server:

Using with Claude Desktop

1Verify MCP Server Startup
Open Claude Desktop and confirm that the configuration has been loaded correctly.
2Execute Basic Commands

   Available tools from this MCP server:
   - tool1: Description of tool1
   - tool2: Description of tool2
   

Programmatic Usage

javascript
// JavaScript example (Node.js)
const { MCPClient } = require('@modelcontextprotocol/client');

const client = new MCPClient();
await client.connect();

// Execute tool
const result = await client.callTool('toolName', {
  parameter1: 'value1',
  parameter2: 'value2'
});

console.log(result);

Advanced Examples

Automation Script

bash
#!/bin/bash

Batch processing example

for file in *.txt; do mcp-tool process "$file" done

API Integration

python

Python example

import requests import json def call_mcp_tool(tool_name, params): response = requests.post( 'http://localhost:3000/mcp/call', json={ 'tool': tool_name, 'parameters': params } ) return response.json()

Usage example

result = call_mcp_tool('analyze', { 'input': 'sample data', 'options': {'format': 'json'} })

Use Cases

In a multi-day project, the AI assistant remembers the progress from the last session, eliminating the need for re-explanation.
Starting a new session automatically loads past technical decisions, allowing for a quick resumption of work.
Visualizing project progress and setting milestones enhances understanding across the team.
The AI assistant understands the project's architecture and provides appropriate code suggestions.