AgentBridge-MCP

AgentBridge-MCP is a modular and extensible MCP server for AI assistants, built with Python and FastAPI. It accepts structured JSON requests and routes them to secure task handlers. The server enhances task modularity and is compatible with various AI agents, making it a versatile command center for AI operations.

GitHub Stars

0

User Rating

Not Rated

Favorites

0

Views

29

Forks

0

Issues

0

README
AgentBridge-MCP

MCP server for an AI assistant

AgentBridge-MCP

A modular, extensible Model Context Protocol (MCP) server for secure and auditable AI agent task routing.


πŸ”§ What is This?

This repo is a foundational local MCP server built with Python + FastAPI that:

  • Accepts structured JSON requests for tasks
  • Routes them to secure modular task handlers (e.g. email, CSV parsing, summarization)
  • Can be extended for any AI agent or tool

πŸš€ What You Get Out of the Box

βœ… FastAPI MCP server
βœ… Modular task/ folder (e.g. echo, get_time)
βœ… Simple POST /mcp handler
βœ… Dispatch logic with task map
βœ… Ready for local testing & extension


πŸ’‘ Why Use It?

This MCP server acts as the command center for AI agents.

It separates "what needs to be done" from "how it’s done" β€” enabling:

  • πŸ“¦ Task modularity
  • πŸ” A2SPA-compliant secure execution
  • ⚑ Agent-Agnostic Logic (GPT, Claude, Ollama, etc.)

πŸ“ Folder Structure

app/
β”œβ”€β”€ main.py # FastAPI entry point
β”œβ”€β”€ router.py # Dispatch logic
└── tasks/
β”œβ”€β”€ echo.py
β”œβ”€β”€ get_time.py
└── summarize_text.py

tests/
β”œβ”€β”€ test_mcp.py

run.sh # Dev runner
requirements.txt # Dependencies


πŸ“Š Workflow Diagram
       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
       β”‚  HTTP Client  β”‚  (e.g. curl, frontend)
       β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
              β”‚  POST /mcp
       β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”
       β”‚   main.py    β”‚  (FastAPI app)
       β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜
              β”‚
       β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”
       β”‚  router.py   β”‚  β†’ Parses task key
       β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜
              β”‚
       β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
       β”‚ app/tasks/{task}.py           β”‚  β†’ Executes logic (e.g., datetime, echo, LLM)
       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                    β”‚
             β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”
             β”‚ Response JSONβ”‚
             β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ“ˆ Coming Soon

This core server will soon power a Modular Investor Outreach AI Agent, with:

CSV-based email flows

Validation + personalization via MCP

PKI-audited A2SPA security

GPT/Ollama integration

🧠 Inspired By

Anthropic’s Claude MCP architecture

A2SPA Protocol (Agent-to-Agent Secure Protocol Architecture)

---
πŸ›  How to Run the Email Agent System
πŸ”§ 1. Install dependencies

pip install -r requirements.txt

πŸ“‘ 2. Start the MCP server (backend task router)

uvicorn app.main:app --reload

🧠 3. Optional: Start Ollama if not running already

ollama run llama3

πŸ–₯️ 4. Launch the Streamlit UI
streamlit run streamlit_app.py
πŸ’‘ What This System Does
Upload a .csv of names and emails (columns: name,email)

Set a subject and shared body for the outreach message

Attach any files (pitch decks, PDFs, etc.)

Ollama personalizes each email with greeting and sign-off

MCP server dispatches email sending via Gmail SMTP
---
πŸ“ File Requirements

Make sure .env is configured with:
EMAIL_USER=your@gmail.com
EMAIL_PASS=your_app_password # from Gmail App Passwords