flock
Flock is a workflow-based low-code platform for rapidly building chatbots, RAG, and coordinating multi-agent teams, powered by LangGraph, Langchain, FastAPI, and NextJS.(Flock 是一个基于workflow工作流的低代码平台,用于快速构建聊天机器人、RAG、Agent和Muti-Agent应用,采用 LangGraph、Langchain、FastAPI 和 NextJS 构建。)
GitHub Stars
1,009
User Rating
Not Rated
Favorites
0
Views
6
Forks
119
Issues
1
Installation
Difficulty
IntermediateEstimated Time
10-20 minutes
Requirements
Node.js: 18.0.0以上
npm: 8.0.0以上
+1 more
Installation
Installation
Prerequisites
Please specify required software and versions:Node.js: 18.0.0 or higher
npm: 8.0.0 or higher
Claude Desktop: Latest version
Installation Steps
1. Clone Repository
bash
git clone https://github.com/Onelevenvy/flock
cd flock
2. Install Dependencies
bash
npm install
3. Configure Claude Desktop
Editclaude_desktop_config.json
to add the MCP server:
json
{
"mcpServers": {
"server-name": {
"command": "node",
"args": ["path/to/server.js"]
}
}
}
4. Start Server
bash
npm start
Troubleshooting
Common Issues
Issue: Server won't start Solution: Check Node.js version and reinstall dependencies. Issue: Not recognized by Claude Desktop Solution: Verify configuration file path and syntax.Configuration
Configuration
Basic Configuration
Claude Desktop Setup
Edit~/.config/claude-desktop/claude_desktop_config.json
(macOS/Linux) or
%APPDATA%\Claude\claude_desktop_config.json
(Windows):
json
{
"mcpServers": {
"tool-name": {
"command": "npx",
"args": ["-y", "package-name"],
"env": {
"API_KEY": "your-api-key"
}
}
}
}
Environment Variables
Set the following environment variables as needed:bash
export API_KEY="your-api-key"
export DEBUG="true"
Advanced Configuration
Security Settings
Store API keys in environment variables or secure configuration files
Set appropriate file access permissions
Adjust logging levels
Performance Tuning
Configure timeout values
Limit concurrent executions
Set up caching
Configuration Examples
Basic Configuration
json
{
"mcpServers": {
"example-mcp": {
"command": "node",
"args": ["server.js"],
"env": {
"PORT": "3000",
"LOG_LEVEL": "info"
}
}
}
}
Advanced Configuration
json
{
"mcpServers": {
"advanced-mcp": {
"command": "python",
"args": ["-m", "server"],
"cwd": "/path/to/server",
"env": {
"PYTHONPATH": "/path/to/modules",
"CONFIG_FILE": "/path/to/config.json"
}
}
}
}
Examples
Examples
Basic Usage
Here are basic usage examples for the MCP server:Using with Claude Desktop
1Verify MCP Server Startup
Open Claude Desktop and confirm that the configuration has been loaded correctly.
2Execute Basic Commands
Available tools from this MCP server:
- tool1: Description of tool1
- tool2: Description of tool2
Programmatic Usage
javascript
// JavaScript example (Node.js)
const { MCPClient } = require('@modelcontextprotocol/client');
const client = new MCPClient();
await client.connect();
// Execute tool
const result = await client.callTool('toolName', {
parameter1: 'value1',
parameter2: 'value2'
});
console.log(result);
Advanced Examples
Automation Script
bash
#!/bin/bash
Batch processing example
for file in *.txt; do
mcp-tool process "$file"
done
API Integration
python
Python example
import requests
import json
def call_mcp_tool(tool_name, params):
response = requests.post(
'http://localhost:3000/mcp/call',
json={
'tool': tool_name,
'parameters': params
}
)
return response.json()
Usage example
result = call_mcp_tool('analyze', {
'input': 'sample data',
'options': {'format': 'json'}
})
Use Cases
Building chatbots: Create automated response systems for customer support.
Developing multi-agent systems: Different agents collaborate to execute tasks.
Creating data analysis tools: Extract information from text data and provide analysis results.
Automating workflows: Create scripts to automate regular business processes.