flock

Flock is a workflow-based low-code platform for rapidly building chatbots, RAG, and coordinating multi-agent teams, powered by LangGraph, Langchain, FastAPI, and NextJS.(Flock 是一个基于workflow工作流的低代码平台,用于快速构建聊天机器人、RAG、Agent和Muti-Agent应用,采用 LangGraph、Langchain、FastAPI 和 NextJS 构建。)

GitHub Stars

1,009

User Rating

Not Rated

Favorites

0

Views

6

Forks

119

Issues

1

Installation
Difficulty
Intermediate
Estimated Time
10-20 minutes
Requirements
Node.js: 18.0.0以上
npm: 8.0.0以上
+1 more

Installation

Installation

Prerequisites

Please specify required software and versions:
Node.js: 18.0.0 or higher
npm: 8.0.0 or higher
Claude Desktop: Latest version

Installation Steps

1. Clone Repository

bash
git clone https://github.com/Onelevenvy/flock
cd flock

2. Install Dependencies

bash
npm install

3. Configure Claude Desktop

Edit claude_desktop_config.json to add the MCP server:
json
{
  "mcpServers": {
    "server-name": {
      "command": "node",
      "args": ["path/to/server.js"]
    }
  }
}

4. Start Server

bash
npm start

Troubleshooting

Common Issues

Issue: Server won't start Solution: Check Node.js version and reinstall dependencies. Issue: Not recognized by Claude Desktop Solution: Verify configuration file path and syntax.

Configuration

Configuration

Basic Configuration

Claude Desktop Setup

Edit ~/.config/claude-desktop/claude_desktop_config.json (macOS/Linux) or %APPDATA%\Claude\claude_desktop_config.json (Windows):
json
{
  "mcpServers": {
    "tool-name": {
      "command": "npx",
      "args": ["-y", "package-name"],
      "env": {
        "API_KEY": "your-api-key"
      }
    }
  }
}

Environment Variables

Set the following environment variables as needed:
bash
export API_KEY="your-api-key"
export DEBUG="true"

Advanced Configuration

Security Settings

Store API keys in environment variables or secure configuration files
Set appropriate file access permissions
Adjust logging levels

Performance Tuning

Configure timeout values
Limit concurrent executions
Set up caching

Configuration Examples

Basic Configuration

json
{
  "mcpServers": {
    "example-mcp": {
      "command": "node",
      "args": ["server.js"],
      "env": {
        "PORT": "3000",
        "LOG_LEVEL": "info"
      }
    }
  }
}

Advanced Configuration

json
{
  "mcpServers": {
    "advanced-mcp": {
      "command": "python",
      "args": ["-m", "server"],
      "cwd": "/path/to/server",
      "env": {
        "PYTHONPATH": "/path/to/modules",
        "CONFIG_FILE": "/path/to/config.json"
      }
    }
  }
}

Examples

Examples

Basic Usage

Here are basic usage examples for the MCP server:

Using with Claude Desktop

1Verify MCP Server Startup
Open Claude Desktop and confirm that the configuration has been loaded correctly.
2Execute Basic Commands

   Available tools from this MCP server:
   - tool1: Description of tool1
   - tool2: Description of tool2
   

Programmatic Usage

javascript
// JavaScript example (Node.js)
const { MCPClient } = require('@modelcontextprotocol/client');

const client = new MCPClient();
await client.connect();

// Execute tool
const result = await client.callTool('toolName', {
  parameter1: 'value1',
  parameter2: 'value2'
});

console.log(result);

Advanced Examples

Automation Script

bash
#!/bin/bash

Batch processing example

for file in *.txt; do mcp-tool process "$file" done

API Integration

python

Python example

import requests import json def call_mcp_tool(tool_name, params): response = requests.post( 'http://localhost:3000/mcp/call', json={ 'tool': tool_name, 'parameters': params } ) return response.json()

Usage example

result = call_mcp_tool('analyze', { 'input': 'sample data', 'options': {'format': 'json'} })

Use Cases

Building chatbots: Create automated response systems for customer support.
Developing multi-agent systems: Different agents collaborate to execute tasks.
Creating data analysis tools: Extract information from text data and provide analysis results.
Automating workflows: Create scripts to automate regular business processes.