aider-mcp
aider-mcpはTypeScriptで構築されたツールで、開発者が効率的にコードを書くための支援を提供します。主にコード補完やエラーチェック機能を持ち、開発プロセスをスムーズに進めることができます。特にTypeScriptの特性を活かした機能が特徴的です。
GitHubスター
0
ユーザー評価
未評価
お気に入り
0
閲覧数
16
フォーク
1
イシュー
0
Aider MCP WebSocket Server
Quick Start
This is a real MCP (Model Context Protocol) server that lets you control Aider programmatically via WebSocket. It's like having Aider as an API.
# 1. Install
npm install
cp .env.example .env
# Add your OPENAI_API_KEY=sk-... to .env
# 2. Run the MCP server (recommended)
npm run mcp
# 3. Test it
python3 test-debug.py
What you get: Send natural language commands to Aider, get back created/edited files and full responses. Each client gets isolated workspaces. Works with any MCP-compatible client (Claude Desktop, custom apps, etc.).
Overview
A production-ready MCP (Model Context Protocol) wrapper that exposes Aider's functionality over WebSocket, enabling editor plugins and services to interact with Aider programmatically. This project provides two server implementations:
src/mcp-server.ts
- Real MCP Protocol Server (Recommended)- Implements standard JSON-RPC 2.0 MCP protocol
- Proper MCP methods:
initialize
,tools/list
,tools/call
- Smart completion detection (waits for Aider to finish)
- Compatible with Claude Desktop and other MCP clients
src/index.ts
- Custom WebSocket Wrapper- Custom protocol with hello/welcome handshake
- Direct stdio pipe to Aider process
- Token-based authentication
Architecture
┌─────────────────┐ JSON-RPC 2.0 ┌─────────────────┐
│ MCP Client │ ◄─────────────────────────► │ MCP Server │
│ (Any MCP app) │ WebSocket │ (mcp-server.ts)│
└─────────────────┘ └────────┬────────┘
│
│ spawn()
▼
┌─────────────────┐
│ Aider Process │
│ (CLI instance) │
└─────────────────┘
Features
- Full MCP Protocol Support: Standard MCP methods and JSON-RPC 2.0
- Multi-tenant Isolation: One Aider child process per client
- Automatic Completion Detection: Waits for Aider to complete tasks
- Isolated Workspaces: Each session gets its own workspace directory
- OpenAI API Integration: Works with your existing OpenAI API key
- Real-time Communication: WebSocket-based bidirectional communication
- Flexible Configuration: Environment variables and CLI arguments
- Structured Logging: JSON logging with Pino
Installation
# Clone and install
git clone <repo-url>
cd aider_mcp
npm install
# Configure environment
cp .env.example .env
# Edit .env and add your OpenAI API key:
# OPENAI_API_KEY=sk-...
Prerequisites
- Node.js 18+
- Aider installed and available in PATH
- OpenAI API key
Usage
Running the Servers
# Run MCP protocol server (recommended)
npm run mcp
# Run custom WebSocket wrapper
npm run dev
# Production build
npm run build && npm start
Testing
# Quick test of MCP server
python3 test-debug.py
# Full test with waiting
python3 test-mcp-wait.py
# JavaScript test client
node test-mcp-client.js
MCP Protocol Communication
Available Tools
The MCP server exposes these tools to clients:
aider_command
- Execute natural language commands{ "name": "aider_command", "arguments": { "command": "create a REST API with Flask" } }
aider_add_file
- Add files to Aider's context{ "name": "aider_add_file", "arguments": { "filename": "app.py" } }
aider_run_command
- Run shell commands through Aider{ "name": "aider_run_command", "arguments": { "command": "npm test" } }
Connection Flow
// 1. Connect via WebSocket
const ws = new WebSocket('ws://localhost:8080');
// 2. Initialize MCP session
ws.send(JSON.stringify({
"jsonrpc": "2.0",
"method": "initialize",
"params": {
"protocolVersion": "0.1.0",
"capabilities": {},
"clientInfo": {
"name": "your-client",
"version": "1.0.0"
}
},
"id": 1
}));
// 3. Call tools after initialization
ws.send(JSON.stringify({
"jsonrpc": "2.0",
"method": "tools/call",
"params": {
"name": "aider_command",
"arguments": {
"command": "create a Python hello world script"
}
},
"id": 2
}));
Configuration
Environment Variables
# Required
OPENAI_API_KEY=sk-... # Your OpenAI API key
# Optional
PORT=8080 # WebSocket server port (MCP server default)
PORT=7011 # WebSocket server port (custom wrapper default)
AIDER_MODEL=gpt-4o-mini # Default model
WORKSPACES_DIR=./workspaces # Where to create project directories
LOG_LEVEL=info # Logging verbosity (debug|info|warn|error)
VALID_TOKENS=token1,token2 # Auth tokens for custom wrapper (empty = no auth)
CLI Arguments
Override configuration at runtime:
# Custom port and workspace
npm run mcp -- --port 9000
npm run dev -- --port 8080 --workspaces ./custom-workspaces
# Override environment variables (custom wrapper only)
npm run dev -- --set AIDER_MODEL=gpt-4 --set LOG_LEVEL=debug
Integration Examples
Claude Desktop App
Add to Claude Desktop config:
{
"mcpServers": {
"aider": {
"command": "node",
"args": ["/path/to/aider_mcp/dist/mcp-server.js"],
"env": {
"OPENAI_API_KEY": "your-key",
"AIDER_MODEL": "gpt-4o-mini"
}
}
}
}
Custom MCP Client
import { WebSocket } from 'ws';
class AiderMCPClient {
constructor(url = 'ws://localhost:8080') {
this.ws = new WebSocket(url);
this.requestId = 1;
this.setup();
}
async callTool(toolName, args) {
return this.sendRequest('tools/call', {
name: toolName,
arguments: args
});
}
sendRequest(method, params) {
const id = this.requestId++;
this.ws.send(JSON.stringify({
jsonrpc: '2.0',
method,
params,
id
}));
}
}
Project Structure
aider_mcp/
├── src/
│ ├── index.ts # Custom WebSocket wrapper
│ └── mcp-server.ts # Real MCP protocol server
├── workspaces/ # Auto-generated client workspaces
├── test-*.py/js # Various test clients
├── package.json # Node.js dependencies
├── tsconfig.json # TypeScript configuration
├── .env # Environment configuration
└── README.md # This file
Scripts
npm run mcp
- Start MCP protocol server (recommended)npm run dev
- Start custom WebSocket wrapper with hot reloadnpm run build
- Compile TypeScript to JavaScriptnpm start
- Start production servernpm run lint
- Run ESLintnpm run typecheck
- Run TypeScript type checking
Troubleshooting
Common Issues
"ConnectionRefusedError" or "Connect call failed"
- Server isn't running. Start it with
npm run mcp
- Wrong port. Check
.env
file (MCP default: 8080, Custom default: 7011)
- Server isn't running. Start it with
"Aider not found"
# Install Aider pip install aider-chat # Verify installation which aider
"No API key" or Aider errors
- Add your OpenAI API key to
.env
:
OPENAI_API_KEY=sk-proj-...
- Add your OpenAI API key to
Server returns too quickly / incomplete responses
- Fixed in MCP server - waits for Aider to complete (3-second silence detection)
"Tool execution timeout"
- Normal for complex tasks
- The MCP server waits as long as needed
Debug Mode
# Run with debug logging
LOG_LEVEL=debug npm run mcp
Checking Results
Files created by Aider are stored in workspace directories:
# List all workspaces
ls -la workspaces/
# Check latest workspace
ls -la workspaces/mcp-*/
# View created files
cat workspaces/mcp-*/your-file.py
Security Considerations
- Isolated Workspaces: Each client session gets its own directory
- Authentication: Custom wrapper supports token-based auth via
VALID_TOKENS
- Git Disabled: Runs with
--no-git
by default for safety - API Key Security: Never commit
.env
file - Production: Consider running in Docker for additional isolation
Performance Notes
- First request to Aider may take longer (model loading)
- Subsequent requests are faster
- The server maintains one Aider process per session
- Workspace cleanup is manual (delete old directories as needed)
License
MIT