generative-ai
Comprehensive resources on Generative AI, including a detailed roadmap, projects, use cases, interview preparation, and coding preparation.
GitHubスター
1,563
ユーザー評価
未評価
お気に入り
0
閲覧数
57
フォーク
378
イシュー
1
Your go-to hub for end-to-end GenAI learning. ⭐ Star this repo to stay updated with the latest GenAI resources :)
📚 Table of Contents
📖 Documentation & Learning Resources
🎯 Getting Started
- GenAI Roadmap - Your complete learning path for GenAI
- AI/ML Roadmap - Comprehensive AI/ML learning guide
- Essential GenAI Terms - Key terminology and concepts
- LLM Fundamentals - Core concepts of Large Language Models
🧠 Core Concepts & Guides
- Vector Embeddings Guide - Understanding vector representations
- Prompt Engineering - Crafting effective prompts
- AI Patterns - Top 25 AI design patterns
- ML Reference Guide - Machine learning reference
🏗️ Architecture & Technical Stack
- GenAI Tech Stacks - Technology stack overview
- LLM Providers - Comparison of LLM providers
- Advanced RAG Decision Flow - RAG architecture guide
- GenAI Project Lifecycle - End-to-end project guide
☁️ Cloud Platform Guides
- GenAI on AWS - AWS implementation | GitHub | YouTube
- GenAI on Azure - Azure implementation guide
- GenAI on VertexAI - Google Cloud Vertex AI guide
💼 Career & Interview Preparation
- GenAI Interview Q&A - Common interview questions
- Agentic AI Interview Q&A - Agent-specific interview prep
- AI Roles & Important Topics - Career paths and topics
🚀 Production & Enterprise
- GenAI Enterprise Production Checklist - Production readiness guide
🛠️ Practical Use Cases & Projects
🔍 Retrieval-Augmented Generation (RAG)
- Advanced RAG - Comprehensive RAG techniques including agentic, graph, multimodal, and 9 advanced patterns (corrective RAG, hybrid search, query expansion, etc.)
- Cache-Augmented Generation - Alternative to RAG using context caching for faster responses
🤖 Agentic AI & Orchestration
- Agentic AI - Multi-agent systems with CrewAI & LangGraph frameworks
- AI Patterns - 25 advanced reasoning patterns (Chain-of-Thought, ReAct, Tree-of-Thought, Meta-Prompting, etc.)
- MCP - Model Context Protocol - Standard protocol for LLM tool interoperability with web search
💬 Conversational AI
- Chatbot with Memory - PDF chatbot using local models with persistent conversation memory
- Conversational Analytics - Full-stack app analyzing customer feedback (React + FastAPI + PostgreSQL)
🔧 LLM Providers & Tools
- LLM Providers - Compare OpenAI, Gemini, Claude, Groq + local models (Ollama, HuggingFace)
- Embedding Models - Guide to vector embeddings with Google, OpenAI, and HuggingFace
📊 Data & Analytics Applications
- Text-to-SQL - Convert natural language to SQL queries with visualization
- Graph Q&A - Query Neo4j graph databases using natural language
- Sentiment Analysis - Analyze customer call transcripts for sentiment and aggressiveness
- Your AI Chat Analytics - Chat analytics dashboard
🎨 Prompt Engineering & Security
- Prompt Engineering - 16+ techniques from basics to APE (Automatic Prompt Engineer)
- Prompt Guard - Detect prompt injections and jailbreak attempts using Meta's Llama Guard
🖼️ Multimodal & Specialized
- Gemini Nano Banana - Text-to-image generation with Gemini 2.5 Flash
- Llama 4 Multi-Function App - All-in-one app: chat, OCR, RAG, and agentic AI
⚡ Automation
- n8n Automation - Setup and usage guide for n8n workflow automation platform
🔗 Quick Access Links
| Category | Resources |
|---|---|
| Learning Path | GenAI Roadmap • AI/ML Roadmap |
| Fundamentals | Essential Terms • LLM Fundamentals • Embeddings Guide |
| Cloud Platforms | AWS • Azure • VertexAI |
| Interview Prep | GenAI Q&A • Agentic AI Q&A |
| Popular Projects | Advanced RAG • Agentic AI • Text-to-SQL |
🤝 Contributing
Contributions are welcome. To add useful resources or code:
Fork this repo
Clone it
git clone https://github.com/genieincodebottle/generative-ai.gitCreate a branch
git checkout -b feature-nameMake changes and commit
git commit -m "Your message"Push your branch
git push origin feature-nameOpen a Pull Request with a brief description of your changes.
0
フォロワー
0
リポジトリ
0
Gist
0
貢献数
This open-source curriculum introduces the fundamentals of Model Context Protocol (MCP) through real-world, cross-language examples in .NET, Java, TypeScript, JavaScript, Rust and Python. Designed for developers, it focuses on practical techniques for building modular, scalable, and secure AI workflows from session setup to service orchestration.
