graphiti-mcp-server

Graphiti MCP Server

GitHubスター

103

ユーザー評価

未評価

お気に入り

0

閲覧数

14

フォーク

10

イシュー

0

README
Graphiti MCP Server 🧠

Python Version
License
Docker

🌟 A powerful knowledge graph server for AI agents, built with Neo4j and integrated with Model Context Protocol (MCP).

🚀 Features
  • 🔄 Dynamic knowledge graph management with Neo4j
  • 🤖 Seamless integration with OpenAI models
  • 🔌 MCP (Model Context Protocol) support
  • 🐳 Docker-ready deployment
  • 🎯 Custom entity extraction capabilities
  • 🔍 Advanced semantic search functionality
🛠️ Installation
Prerequisites
  • Docker and Docker Compose
  • Python 3.10 or higher
  • OpenAI API key
  • Minimum 4GB RAM (recommended 8GB)
  • 2GB free disk space
Quick Start 🚀
  1. Clone the repository:
git clone https://github.com/gifflet/graphiti-mcp-server.git
cd graphiti-mcp-server
  1. Set up environment variables:
cp .env.sample .env
  1. Edit .env with your configuration:
# Required for LLM operations
OPENAI_API_KEY=your_openai_api_key_here
MODEL_NAME=gpt-4.1-mini

# Optional: Custom OpenAI endpoint (e.g., for proxies)
# OPENAI_BASE_URL=https://api.openai.com/v1

# Neo4j Configuration (defaults work with Docker)
NEO4J_URI=bolt://neo4j:7687
NEO4J_USER=neo4j
NEO4J_PASSWORD=demodemo
  1. Start the services:
docker compose up -d
  1. Verify installation:
# Check if services are running
docker compose ps

# Check logs
docker compose logs graphiti-mcp
Alternative: Environment Variables

You can run with environment variables directly:

OPENAI_API_KEY=your_key MODEL_NAME=gpt-4.1-mini docker compose up
🔧 Configuration
Service Ports 🌐
Service Port Purpose
Neo4j Browser 7474 Web interface for graph visualization
Neo4j Bolt 7687 Database connection
Graphiti MCP 8000 MCP server endpoint
Environment Variables 🔧
OpenAI Configuration
Variable Required Default Description
OPENAI_API_KEY - Your OpenAI API key
OPENAI_BASE_URL - Custom OpenAI API endpoint (consumed by OpenAI SDK)
MODEL_NAME gpt-4.1-mini Main LLM model to use
SMALL_MODEL_NAME gpt-4.1-nano Small LLM model for lighter tasks
LLM_TEMPERATURE 0.0 LLM temperature (0.0-2.0)
EMBEDDER_MODEL_NAME text-embedding-3-small Embedding model
Neo4j Configuration
Variable Required Default Description
NEO4J_URI bolt://neo4j:7687 Neo4j connection URI
NEO4J_USER neo4j Neo4j username
NEO4J_PASSWORD demodemo Neo4j password
Server Configuration
Variable Required Default Description
MCP_SERVER_HOST - MCP server host binding
SEMAPHORE_LIMIT 10 Concurrent operation limit for LLM calls
Azure OpenAI Configuration (Optional)

For Azure OpenAI deployments, use these environment variables instead of the standard OpenAI configuration:

Variable Required Default Description
AZURE_OPENAI_ENDPOINT ✅* - Azure OpenAI endpoint URL
AZURE_OPENAI_API_VERSION ✅* - Azure OpenAI API version
AZURE_OPENAI_DEPLOYMENT_NAME ✅* - Azure OpenAI deployment name
AZURE_OPENAI_USE_MANAGED_IDENTITY false Use Azure managed identity for auth
AZURE_OPENAI_EMBEDDING_ENDPOINT - Separate endpoint for embeddings
AZURE_OPENAI_EMBEDDING_API_VERSION - API version for embeddings
AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME - Deployment name for embeddings
AZURE_OPENAI_EMBEDDING_API_KEY - Separate API key for embeddings

* Required when using Azure OpenAI

Notes:

  • OPENAI_BASE_URL is consumed directly by the OpenAI Python SDK, useful for proxy configurations or custom endpoints
  • SEMAPHORE_LIMIT controls concurrent LLM API calls - decrease if you encounter rate limits, increase for higher throughput
  • Azure configuration is an alternative to standard OpenAI - don't mix both configurations
Neo4j Settings 🗄️

Default configuration for Neo4j:

  • Username: neo4j
  • Password: demodemo
  • URI: bolt://neo4j:7687 (within Docker network)
  • Memory settings optimized for development
Docker Environment Variables 🐳

You can run with environment variables directly:

OPENAI_API_KEY=your_key MODEL_NAME=gpt-4.1-mini docker compose up

For Azure OpenAI:

AZURE_OPENAI_ENDPOINT=https://your-resource.openai.azure.com \
AZURE_OPENAI_API_VERSION=2024-02-01 \
AZURE_OPENAI_DEPLOYMENT_NAME=your-deployment \
OPENAI_API_KEY=your_key \
docker compose up
🔌 Integration
Cursor IDE Integration 🖥️
  1. Configure Cursor MCP settings:
{
  "mcpServers": {
    "Graphiti": {
      "command": "uv",
      "args": ["run", "graphiti_mcp_server.py"],
      "env": {
        "OPENAI_API_KEY": "your_key_here"
      }
    }
  }
}
  1. For Docker-based setup:
{
  "mcpServers": {
    "Graphiti": {
      "url": "http://localhost:8000/sse"
    }
  }
}
  1. Add Graphiti rules to Cursor's User Rules (see graphiti_cursor_rules.mdc)
  2. Start an agent session in Cursor
Other MCP Clients

The server supports standard MCP transports:

  • SSE (Server-Sent Events): http://localhost:8000/sse
  • WebSocket: ws://localhost:8000/ws
  • Stdio: Direct process communication
💻 Development
Local Development Setup
  1. Install dependencies:
# Using uv (recommended)
curl -LsSf https://astral.sh/uv/install.sh | sh
uv sync

# Or using pip
pip install -r requirements.txt
  1. Start Neo4j locally:
docker run -d \
  --name neo4j-dev \
  -p 7474:7474 -p 7687:7687 \
  -e NEO4J_AUTH=neo4j/demodemo \
  neo4j:5.26.0
  1. Run the server:
# Set environment variables
export OPENAI_API_KEY=your_key
export NEO4J_URI=bolt://localhost:7687

# Run with stdio transport
uv run graphiti_mcp_server.py

# Or with SSE transport
uv run graphiti_mcp_server.py --transport sse --use-custom-entities
Testing
# Run basic connectivity test
curl http://localhost:8000/health

# Test MCP endpoint
curl http://localhost:8000/sse
🔍 Troubleshooting
Common Issues
🐳 Docker Issues
# Clean up and restart
docker compose down -v
docker compose up --build

# Check disk space
docker system df
Logs and Debugging
# View all logs
docker compose logs -f

# View specific service logs
docker compose logs -f graphiti-mcp
docker compose logs -f neo4j

# Enable debug logging
docker compose up -e LOG_LEVEL=DEBUG
Performance Issues
  • Memory: Increase Neo4j heap size in docker-compose.yml
  • Storage: Monitor Neo4j data volume usage
  • Network: Check for firewall blocking ports 7474, 7687, 8000
🏗️ Architecture
┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   MCP Client    │    │  Graphiti MCP    │    │     Neo4j       │
│   (Cursor)      │◄──►│     Server       │◄──►│   Database      │
│                 │    │   (Port 8000)    │    │  (Port 7687)    │
└─────────────────┘    └──────────────────┘    └─────────────────┘
                                │
                                ▼
                       ┌──────────────────┐
                       │   OpenAI API     │
                       │   (LLM Client)   │
                       └──────────────────┘
Components
  • Neo4j Database: Graph storage and querying
  • Graphiti MCP Server: API layer and LLM operations
  • OpenAI Integration: Entity extraction and semantic processing
  • MCP Protocol: Standardized AI agent communication
🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

Need help? Open an issue or check our troubleshooting guide above.