sqlite-mcp-agent
sqlite-mcp-agentは、SQLiteデータベースを操作するためのPython製エージェントです。データの挿入、更新、削除、クエリ実行などの基本的な機能を提供し、簡単にSQLiteデータベースと連携できます。特に自動化されたワークフローやデータ分析に役立ちます。
GitHubスター
0
ユーザー評価
未評価
お気に入り
0
閲覧数
6
フォーク
3
イシュー
2
README
Local MCP Client Demo
This project demonstrates a fully local Model Context Protocol (MCP) client using:
- SQLite via Python
sqlite3
- FastMCP (
mcp-server
) for tool management - DeepSeek-R1 LLM hosted locally via Ollama
- LlamaIndex for building an MCP-powered agent
📦 Requirements
Ensure you have the following installed:
Python 3.8+
Ollama CLI (for DeepSeek-R1)
System packages:
pip install -r requirements.txt
🛠️ Files Overview
server.py
— MCP server exposingadd_data
&read_data
tools backed by SQLiteollama_client.py
— Async agent setup using Ollama + LlamaIndexchat_interface.py
— CLI wrapper to chat with the agentrequirements.txt
— Python dependencies
🚀 Setup & Running
Start the MCP Server
# Initialize database and run in SSE mode python server.py --server_type sse
Launch Ollama & DeepSeek-R1
ollama pull deepseek-r1 ollama run deepseek-r1
Install Python Dependencies
pip install -r requirements.txt
Run the Chat Client
python chat_interface.py
Type your queries (e.g.,
add_data(...)
or natural questions) and see the agent invoke tools and respond.
🎯 Best Practices
- Tool Design: Keep tools focused (single responsibility) and clearly document inputs/outputs.
- Error Handling: Catch and log exceptions in tool implementations to avoid silent failures.
- Security: Avoid executing raw SQL when possible; use parameterized queries for production.
- Extensibility: Add new MCP tools by decorating with
@mcp.tool()
and exposing vialist_tools
.
📝 Next Steps
- Integrate additional data sources (e.g., external APIs).
- Deploy on Lightning AI for scalable hosting.
- Enhance agent prompts and caching strategy for performance.
Demo built with ❤️ for fully local, context-aware agents!