tempo-mcp-server

Tempo MCP Serverは、Grafana Tempoと統合されたModel Context Protocol(MCP)に基づくGo製のサーバーです。このサーバーは、AIアシスタントが分散トレースデータをクエリし分析することを可能にします。HTTPモードでは、リアルタイムイベントのためのSSEエンドポイントも提供しています。

GitHubスター

14

ユーザー評価

未評価

お気に入り

0

閲覧数

3

フォーク

2

イシュー

7

README
Tempo MCP Server

A Go-based server implementation for the Model Context Protocol (MCP) with Grafana Tempo integration.

Overview

This MCP server allows AI assistants to query and analyze distributed tracing data from Grafana Tempo. It follows the Model Context Protocol to provide tool definitions that can be used by compatible AI clients such as Claude Desktop.

Getting Started
Prerequisites
  • Go 1.21 or higher
  • Docker and Docker Compose (for local testing)
Building and Running

Build and run the server:

# Build the server
go build -o tempo-mcp-server ./cmd/server

# Run the server
./tempo-mcp-server

Or run directly with Go:

go run ./cmd/server

The server now supports two modes of communication:

  1. Standard input/output (stdin/stdout) following the Model Context Protocol (MCP)
  2. HTTP Server with Server-Sent Events (SSE) endpoint for integration with tools like n8n

The default port for the HTTP server is 8080, but can be configured using the SSE_PORT environment variable.

Server Endpoints

When running in HTTP mode, the server exposes the following endpoints:

  • SSE Endpoint: http://localhost:8080/sse - For real-time event streaming
  • MCP Endpoint: http://localhost:8080/mcp - For MCP protocol messaging
Docker Support

You can build and run the MCP server using Docker:

# Build the Docker image
docker build -t tempo-mcp-server .

# Run the server
docker run -p 8080:8080 --rm -i tempo-mcp-server

Alternatively, you can use Docker Compose for a complete test environment:

# Build and run with Docker Compose
docker-compose up --build
Project Structure
.
├── cmd/
│   ├── server/       # MCP server implementation
│   └── client/       # Client for testing the MCP server
├── internal/
│   └── handlers/     # Tool handlers
├── pkg/
│   └── utils/        # Utility functions and shared code
└── go.mod            # Go module definition
MCP Server

The Tempo MCP Server implements the Model Context Protocol (MCP) and provides the following tools:

Tempo Query Tool

The tempo_query tool allows you to query Grafana Tempo trace data:

  • Required parameters:
    • query: Tempo query string (e.g., {service.name="frontend"}, {duration>1s})
  • Optional parameters:
    • url: The Tempo server URL (default: from TEMPO_URL environment variable or http://localhost:3200)
    • start: Start time for the query (default: 1h ago)
    • end: End time for the query (default: now)
    • limit: Maximum number of traces to return (default: 20)
    • username: Username for basic authentication (optional)
    • password: Password for basic authentication (optional)
    • token: Bearer token for authentication (optional)
Environment Variables

The Tempo query tool supports the following environment variables:

  • TEMPO_URL: Default Tempo server URL to use if not specified in the request
  • SSE_PORT: Port for the HTTP/SSE server (default: 8080)
Testing
./run-client.sh tempo_query "{resource.service.name=\\\"example-service\\\"}"
Using with Claude Desktop

You can use this MCP server with Claude Desktop to add Tempo query tools. Follow these steps:

  1. Build the server or Docker image
  2. Configure Claude Desktop to use the server by adding it to your Claude Desktop configuration file

Example Claude Desktop configuration:

{
  "mcpServers": {
    "temposerver": {
      "command": "path/to/tempo-mcp-server",
      "args": [],
      "env": {
        "TEMPO_URL": "http://localhost:3200"
      },
      "disabled": false,
      "autoApprove": ["tempo_query"]
    }
  }
}

For Docker:

{
  "mcpServers": {
    "temposerver": {
      "command": "docker",
      "args": ["run", "--rm", "-i", "-e", "TEMPO_URL=http://host.docker.internal:3200", "tempo-mcp-server"],
      "disabled": false,
      "autoApprove": ["tempo_query"]
    }
  }
}

The Claude Desktop configuration file is located at:

  • On macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • On Windows: %APPDATA%\Claude\claude_desktop_config.json
  • On Linux: ~/.config/Claude/claude_desktop_config.json
Using with Cursor

You can also integrate the Tempo MCP server with the Cursor editor. To do this, add the following configuration to your Cursor settings:

{
  "mcpServers": {
    "tempo-mcp-server": {
      "command": "docker",
      "args": ["run", "--rm", "-i", "-e", "TEMPO_URL=http://host.docker.internal:3200", "tempo-mcp-server:latest"]
    }
  }
}
Using with n8n

To use the Tempo MCP server with n8n, you can connect to it using the MCP Client Tool node:

  1. Add an MCP Client Tool node to your n8n workflow

  2. Configure the node with these parameters:

    • SSE Endpoint: http://your-server-address:8080/sse (replace with your actual server address)
    • Authentication: Choose appropriate authentication if needed
    • Tools to Include: Choose which Tempo tools to expose to the AI Agent
  3. Connect the MCP Client Tool node to an AI Agent node that will use the Tempo querying capabilities

Example workflow:
Trigger → MCP Client Tool (Tempo server) → AI Agent (Claude)

Example Usage

Once configured, you can use the tools in Claude with queries like:

  • "Query Tempo for traces with the query {duration>1s}"
  • "Find traces from the frontend service in Tempo using query {service.name=\"frontend\"}"
  • "Show me the most recent 50 traces from Tempo with {http.status_code=500}"
Screenshot 2025-04-11 at 5 24 03 PM
License

This project is licensed under the MIT License.

作者情報
Grafana Labs

Grafana Labs is behind leading open source projects Grafana and Loki, and the creator of the first open & composable observability platform.

Sweden

5,550

フォロワー

889

リポジトリ

0

Gist

0

貢献数

関連するMCP
k8s-mcp-server logo

Kubernetes MCPサーバーは、Kubernetesクラスターと標準化されたインターフェースを通じて相互作用するためのツールを提供します。APIリソースの発見、リソースのリスト表示、詳細情報の取得、ポッドのログ取得、メトリクスの取得など、多くの機能を備えています。これにより、Kubernetesの管理が効率的になります。

Go
nunu logo
nunu
2378

nunuは、Go言語で開発された自動化ツールで、効率的なワークフローを実現します。ユーザーは簡単にタスクを自動化でき、複雑なプロセスを簡素化することが可能です。豊富な機能と直感的なインターフェースを備えており、開発者やビジネスユーザーにとって非常に便利です。

Go
context-space logo

context-spaceは、コンテキストを管理し、ワークフローを自動化するための強力なツールです。ユーザーは、さまざまなデータソースから情報を統合し、効率的な作業環境を構築できます。特に、APIとの連携やデータ分析機能が充実しており、業務の生産性向上に寄与します。

Go