mcp_ai_lab
このリポジトリは、モデルコンテキストプロトコル(MCP)を基盤としたAIエージェントアーキテクチャを探求し、実装するためのプロジェクト群を提供しています。MCPエージェントフレームワークやメッセージハンドラー、データセットツールなど、多様なツールが揃っており、開発者がMCPに基づくエージェントを構築する際のガイドラインやドキュメントも充実しています。
GitHubスター
0
ユーザー評価
未評価
お気に入り
0
閲覧数
17
フォーク
0
イシュー
0
MCP AI Agents LAB 🤖📚
Model Context Protocol (MCP) + AI Agents: A suite of advanced projects that explore, implement, and document AI agent architectures powered by standardized context protocols.
This repository serves as a unified hub for cutting-edge MCP-based agent systems, with full documentation, protocol guides, and open-source tools.
🚀 Projects in this Suite
- 🧠 MCP Agent Framework: Build modular, interoperable AI agents that communicate via Model Context Protocol.
- 🔄 MCP Message Handler: Universal handler for context injection and protocol message formatting.
- 📦 Dataset Tools: Tools to convert real-world context data into MCP-compliant datasets.
- 📝 Context Chain Builder: Automate the chaining of multiple MCP messages to simulate complex tasks.
- 🌐 MCP Proxy Layer: Middleware to connect MCP agents with APIs, databases, and models (LLMs, RAG systems).
- 🤖 Example Agents: Reference AI agents (task executors, summarizers, planners) built fully on MCP.
📚 Documentation
Explore full guides and technical breakdowns:
- 🌐 What is Model Context Protocol?
- 🛠️ Building an MCP Agent
- 📦 MCP Message Format Spec
- 🔗 Chaining MCP Contexts
- 🧑💻 Running Example Agents
📖 Start here: Getting Started Guide
🌐 Useful External Links
- 📄 MCP Official Spec: https://modelcontext.org/spec
- 💬 MCP Community Forum: https://community.modelcontext.org
- 🔗 LangChain MCP Integration: https://github.com/langchain-ai/langchain
- 🧩 OpenAI MCP Resources: https://platform.openai.com/docs
🔧 Requirements
- Python 3.10+
pydantic
,requests
,fastapi
(for protocol servers)- Optional:
torch
,transformers
(for LLM-backed agents)
🏃♂️ Quick Start
# Clone the repo
git clone https://github.com/yourusername/mcp_ai_lab.git
cd mcp_ai_lab
# Install requirements
pip install -r requirements.txt
# Run an example agent
python agents/example_agent.py
C4GT-2025 @HCW-home,💻✨.Ex- Intern @ConvertAPI, @LectureNotes and @Intel
16
フォロワー
59
リポジトリ
2
Gist
0
貢献数
This open-source curriculum introduces the fundamentals of Model Context Protocol (MCP) through real-world, cross-language examples in .NET, Java, TypeScript, JavaScript, and Python. Designed for developers, it focuses on practical techniques for building modular, scalable, and secure AI workflows from session setup to service orchestration.
The Crossroads for AI Data Exchanges. A unified, self-hostable web interface for discovering, configuring, and managing Model Context Protocol (MCP) servers—bringing together AI tools, workspaces, prompts, and logs from multiple MCP sources (Claude, Cursor, etc.) under one roof.