Gitingest-MCP

mcp server for gitingest

GitHub Stars

117

User Rating

Not Rated

Favorites

0

Views

17

Forks

23

Issues

3

Installation
Difficulty
Intermediate
Estimated Time
10-20 minutes
Requirements
Node.js: 18.0.0以上
npm: 8.0.0以上
+1 more

Installation

Installation

Prerequisites

Please specify required software and versions:
Node.js: 18.0.0 or higher
npm: 8.0.0 or higher
Claude Desktop: Latest version

Installation Steps

1. Install via Smithery

bash
npx -y @smithery/cli@latest install @puravparab/gitingest-mcp --client claude --config "{}" # Claude
npx -y @smithery/cli@latest run @puravparab/gitingest-mcp --client cursor --config "{}" # Cursor

2. Install via GitHub

1Add this to the MCP client config file:
json
{
  "mcpServers": {
    "gitingest-mcp": {
      "command": "/uvx",
      "args": [
        "--from",
        "git+https://github.com/puravparab/gitingest-mcp",
        "gitingest-mcp"
      ]
    }
  }
}

3. Installing Repo Manually

1Clone the repo:
bash
git clone https://github.com/puravparab/Gitingest-MCP
cd Gitingest-MCP
2Install dependencies:
bash
uv sync
3Add this to the MCP client config file:
json
{
  "mcpServers": {
    "gitingest": {
      "command": "/uv",
      "args": [
        "run",
        "--with",
        "mcp[cli]",
        "--with-editable",
        "/gitingest_mcp",
        "mcp",
        "run",
        "/gitingest-mcp/src/gitingest_mcp/server.py"
      ]
    }
  }
}

4. Troubleshooting

If you encounter issues, refer to the [MCP server documentation](https://modelcontextprotocol.io/quickstart/server).

Configuration

Configuration

Basic Configuration

Claude Desktop Setup

Edit ~/.config/claude-desktop/claude_desktop_config.json (macOS/Linux) or %APPDATA%\Claude\claude_desktop_config.json (Windows):
json
{
  "mcpServers": {
    "gitingest-mcp": {
      "command": "/uv",
      "args": [
        "run",
        "--with",
        "mcp[cli]",
        "--with-editable",
        "/gitingest_mcp",
        "mcp",
        "run",
        "/gitingest-mcp/src/gitingest_mcp/server.py"
      ]
    }
  }
}

Environment Variables

Set the following environment variables as needed:
bash
export API_KEY="your-api-key"
export DEBUG="true"

Advanced Configuration

Security Settings

Store API keys in environment variables or secure configuration files
Set appropriate file access permissions
Adjust logging levels

Performance Tuning

Configure timeout values
Limit concurrent executions
Set up caching

Configuration Examples

Basic Configuration

json
{
  "mcpServers": {
    "gitingest-mcp": {
      "command": "/uv",
      "args": [
        "run",
        "--with",
        "mcp[cli]",
        "--with-editable",
        "/gitingest_mcp",
        "mcp",
        "run",
        "/gitingest-mcp/src/gitingest_mcp/server.py"
      ]
    }
  }
}

Advanced Configuration

json
{
  "mcpServers": {
    "gitingest-mcp": {
      "command": "python",
      "args": ["-m", "server"],
      "cwd": "/path/to/server",
      "env": {
        "PYTHONPATH": "/path/to/modules",
        "CONFIG_FILE": "/path/to/config.json"
      }
    }
  }
}

Examples

Examples

Basic Usage

Here are basic usage examples for the MCP server:

Using with Claude Desktop

1Verify MCP Server Startup
Open Claude Desktop and confirm that the configuration has been loaded correctly.
2Execute Basic Commands

   Available tools from this MCP server:
   - tool1: Description of tool1
   - tool2: Description of tool2
   

Programmatic Usage

javascript
// JavaScript example (Node.js)
const { MCPClient } = require('@modelcontextprotocol/client');

const client = new MCPClient();
await client.connect();

// Execute tool
const result = await client.callTool('toolName', {
  parameter1: 'value1',
  parameter2: 'value2'
});

console.log(result);

Advanced Examples

Automation Script

bash
#!/bin/bash

Batch processing example

for file in *.txt; do mcp-tool process "$file" done

API Integration

python

Python example

import requests import json def call_mcp_tool(tool_name, params): response = requests.post( 'http://localhost:3000/mcp/call', json={ 'tool': tool_name, 'parameters': params } ) return response.json()

Usage example

result = call_mcp_tool('analyze', { 'input': 'sample data', 'options': {'format': 'json'} })

Use Cases

To check the summary of a GitHub repository.
To visualize the project directory structure.
To quickly retrieve the content of specific files.
To integrate with AI tools for automated analysis of repository information.
To generate summaries of repositories for information sharing within a development team.